计算特定时间段内的发生次数

Calculate number of occurrences within a specific time period

我有以下数据,其中 ID 代表个人,Date 代表日期,Purchased 代表是否有人购买(我做了最后一个,以便我可以计算发生次数):

   ID       Date Purchased
1   1 2017-01-01         1
2   1 2017-08-03         1
3   1 2017-09-02         1
4   2 2017-09-04         1
5   2 2018-07-12         1
6   2 2018-11-03         1
7   2 2018-12-05         1
8   2 2019-01-01         1
9   3 2018-02-03         1
10  3 2020-02-03         1
11  3 2020-03-01         1

我想创建一个名为“Frequency”的变量,通过汇总您在数据框中看到的特定日期之前的所有“Purchased”来计算个人在过去一年中进行购买的次数.

例如,对于第 3 行,这将导致“频率”为 2,因为 2017-01-012017-08-03 都在 2017-09-02 的一年时间段内(所以在2016-09-022017-09-01之间。
查看所需的输出:

   ID       Date Purchased Frequency
1   1 2017-01-01         1         0
2   1 2017-08-03         1         1
3   1 2017-09-02         1         2
4   2 2017-09-04         1         0
5   2 2018-07-12         1         1
6   2 2018-11-03         1         1
7   2 2018-12-05         1         2
8   2 2019-01-01         1         3
9   3 2018-02-03         1         0
10  3 2020-02-03         1         0
11  3 2020-03-01         1         1

要重现数据帧:

df <- data.frame(ID = c(1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3), Date = as.Date(c('2017-01-01', '2017-08-03', '2017-09-02', '2017-09-04', '2018-07-12', '2018-11-03', '2018-12-05', '2019-01-01', '2018-02-03', '2020-02-03', '2020-03-01')), Purchased = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ))

我在 stackoverlow 上进行了搜索,但还没有找到可以应用到我的情况并获得所需结果的答案。我发现并尝试过的其中一件事是:

df$frequency <-
sapply(df$Date, function(x){
sum(df$Date < x & df$Date >= x - 365)
})

我相信如果我能找到一种方法来包含它按 ID 分组(因此它按 ID 求和而不是整体求和),这可能会给我想要的结果。当然不能肯定地说,因为我还没有能够测试出来。非常感谢任何帮助。

您可以将非相等连接与 data.table:

结合使用
library(data.table)

setDT(df)
df[,c("Date","Before"):=.(as.Date(Date),as.Date(Date)-365)]
df[df,.(ID, Date),on=.(ID=ID, Date>=Before, Date<=Date)][,.N-1,by=.(ID,Date)]

   ID       Date V1
 1:  1 2017-01-01  0
 2:  1 2017-08-03  1
 3:  1 2017-09-02  2
 4:  2 2017-09-04  0
 5:  2 2018-07-12  1
 6:  2 2018-11-03  1
 7:  2 2018-12-05  2
 8:  2 2019-01-01  3
 9:  3 2018-02-03  0
10:  3 2020-02-03  0
11:  3 2020-03-01  1

这是一个 tidyverse 解决方案:

library(dplyr)
library(purrr)
library(lubridate)

df %>%
  group_by(ID) %>%
  mutate(Frequency = map_dbl(Date, 
                     ~sum(Purchased[between(Date, .x - years(1), .x - 1)]))) %>%
  ungroup

#      ID Date       Purchased Frequency
#   <dbl> <date>         <dbl>     <dbl>
# 1     1 2017-01-01         1         0
# 2     1 2017-08-03         1         1
# 3     1 2017-09-02         1         2
# 4     2 2017-09-04         1         0
# 5     2 2018-07-12         1         1
# 6     2 2018-11-03         1         1
# 7     2 2018-12-05         1         2
# 8     2 2019-01-01         1         3
# 9     3 2018-02-03         1         0
#10     3 2020-02-03         1         0
#11     3 2020-03-01         1         1

代码的逻辑是每个 ID 中的每个 Datesum 是当前日期 - 1 年和当前日期 - 1 之间的 Purchased 值天.