在 Keras 中替换 MobileNet 应用程序中的步幅层
Replace stride layers in MobileNet application in Keras
我想在 Keras
MobileNetV2
中应用 39 x 39
大小的图像来分类 3
类。我的图像代表热图(例如,键盘上按下了什么键)。我认为 MobileNet
旨在处理大小为 224 x 224
的图像。我不会使用迁移学习,而是从头开始训练模型。
为了让 MobileNet
在我的图像上工作,我想用步幅 1
替换前三个步幅 2
卷积。我有以下代码:
from tensorflow.keras.applications import MobileNetV2
base_model = MobileNetV2(weights=None, include_top=False,
input_shape=[39,39,3])
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dropout(0.5)(x)
output_tensor = Dense(3, activation='softmax')(x)
cnn_model = Model(inputs=base_model.input, outputs=output_tensor)
opt = Adam(lr=learning_rate)
cnn_model.compile(loss='categorical_crossentropy',
optimizer=opt, metrics=['accuracy', tf.keras.metrics.AUC()])
如何在不自己构建 MobileNet
的情况下用步幅 1
替换前三个步幅 2
卷积?
这是满足您需要的一种解决方法,但我认为可能有更通用的方法。然而,在MobileNetV2
中,只有一个conv
层带有strides 2
。如果按照源码,here
x = layers.Conv2D(
first_block_filters,
kernel_size=3,
strides=(2, 2),
padding='same',
use_bias=False,
name='Conv1')(img_input)
x = layers.BatchNormalization(
axis=channel_axis, epsilon=1e-3, momentum=0.999, name='bn_Conv1')(
x)
x = layers.ReLU(6., name='Conv1_relu')(x)
其余的块定义如下
x = _inverted_res_block(
x, filters=16, alpha=alpha, stride=1, expansion=1, block_id=0)
x = _inverted_res_block(
x, filters=24, alpha=alpha, stride=2, expansion=6, block_id=1)
x = _inverted_res_block(
x, filters=24, alpha=alpha, stride=1, expansion=6, block_id=2)
所以,这里我先处理conv
和stride=(2, 2)
。想法很简单,我们将在内置模型的正确位置添加一个新层,然后删除所需的层。
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
alpha = 1.0
first_block_filters = _make_divisible(32 * alpha, 8)
inputLayer = tf.keras.Input(shape=(39, 39, 3), name="inputLayer")
inputcOonv = tf.keras.layers.Conv2D(
first_block_filters,
kernel_size=3,
strides=(1, 1),
padding='same',
use_bias=False,
name='Conv1_'
)(inputLayer)
上面的_make_divisible
函数只是从源代码中推导出来的。无论如何,现在我们将这一层归因于第一个 conv
层之前的 MobileNetV2
,如下所示:
base_model = tf.keras.applications.MobileNetV2(weights=None,
include_top=False,
input_tensor = inputcOonv)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dropout(0.5)(x)
output_tensor = Dense(3, activation='softmax')(x)
cnn_model = Model(inputs=base_model.input, outputs=output_tensor)
现在,如果我们观察
for i, l in enumerate(cnn_model.layers):
print(l.name, l.output_shape)
if i == 8: break
inputLayer [(None, 39, 39, 3)]
Conv1_ (None, 39, 39, 32)
Conv1 (None, 20, 20, 32)
bn_Conv1 (None, 20, 20, 32)
Conv1_relu (None, 20, 20, 32)
expanded_conv_depthwise (None, 20, 20, 32)
expanded_conv_depthwise_BN (None, 20, 20, 32)
expanded_conv_depthwise_relu (None, 20, 20, 32)
expanded_conv_project (None, 20, 20, 16)
图层名称Conv1_
和Conv1
分别是新图层(strides = 1
)和旧图层(strides = 2
)。根据需要,现在我们删除层 Conv1
和 strides = 2
如下:
cnn_model._layers.pop(2) # remove Conv1
for i, l in enumerate(cnn_model.layers):
print(l.name, l.output_shape)
if i == 8: break
inputLayer [(None, 39, 39, 3)]
Conv1_ (None, 39, 39, 32)
bn_Conv1 (None, 20, 20, 32)
Conv1_relu (None, 20, 20, 32)
expanded_conv_depthwise (None, 20, 20, 32)
expanded_conv_depthwise_BN (None, 20, 20, 32)
expanded_conv_depthwise_relu (None, 20, 20, 32)
expanded_conv_project (None, 20, 20, 16)
expanded_conv_project_BN (None, 20, 20, 16)
现在,您有 cnn_model
个模型,其第一个 conv
层上有 strides = 1
。但是,如果您想知道这种方法和可能的问题,请参阅我与此相关的其他答案。
我想在 Keras
MobileNetV2
中应用 39 x 39
大小的图像来分类 3
类。我的图像代表热图(例如,键盘上按下了什么键)。我认为 MobileNet
旨在处理大小为 224 x 224
的图像。我不会使用迁移学习,而是从头开始训练模型。
为了让 MobileNet
在我的图像上工作,我想用步幅 1
替换前三个步幅 2
卷积。我有以下代码:
from tensorflow.keras.applications import MobileNetV2
base_model = MobileNetV2(weights=None, include_top=False,
input_shape=[39,39,3])
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dropout(0.5)(x)
output_tensor = Dense(3, activation='softmax')(x)
cnn_model = Model(inputs=base_model.input, outputs=output_tensor)
opt = Adam(lr=learning_rate)
cnn_model.compile(loss='categorical_crossentropy',
optimizer=opt, metrics=['accuracy', tf.keras.metrics.AUC()])
如何在不自己构建 MobileNet
的情况下用步幅 1
替换前三个步幅 2
卷积?
这是满足您需要的一种解决方法,但我认为可能有更通用的方法。然而,在MobileNetV2
中,只有一个conv
层带有strides 2
。如果按照源码,here
x = layers.Conv2D(
first_block_filters,
kernel_size=3,
strides=(2, 2),
padding='same',
use_bias=False,
name='Conv1')(img_input)
x = layers.BatchNormalization(
axis=channel_axis, epsilon=1e-3, momentum=0.999, name='bn_Conv1')(
x)
x = layers.ReLU(6., name='Conv1_relu')(x)
其余的块定义如下
x = _inverted_res_block(
x, filters=16, alpha=alpha, stride=1, expansion=1, block_id=0)
x = _inverted_res_block(
x, filters=24, alpha=alpha, stride=2, expansion=6, block_id=1)
x = _inverted_res_block(
x, filters=24, alpha=alpha, stride=1, expansion=6, block_id=2)
所以,这里我先处理conv
和stride=(2, 2)
。想法很简单,我们将在内置模型的正确位置添加一个新层,然后删除所需的层。
def _make_divisible(v, divisor, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
alpha = 1.0
first_block_filters = _make_divisible(32 * alpha, 8)
inputLayer = tf.keras.Input(shape=(39, 39, 3), name="inputLayer")
inputcOonv = tf.keras.layers.Conv2D(
first_block_filters,
kernel_size=3,
strides=(1, 1),
padding='same',
use_bias=False,
name='Conv1_'
)(inputLayer)
上面的_make_divisible
函数只是从源代码中推导出来的。无论如何,现在我们将这一层归因于第一个 conv
层之前的 MobileNetV2
,如下所示:
base_model = tf.keras.applications.MobileNetV2(weights=None,
include_top=False,
input_tensor = inputcOonv)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dropout(0.5)(x)
output_tensor = Dense(3, activation='softmax')(x)
cnn_model = Model(inputs=base_model.input, outputs=output_tensor)
现在,如果我们观察
for i, l in enumerate(cnn_model.layers):
print(l.name, l.output_shape)
if i == 8: break
inputLayer [(None, 39, 39, 3)]
Conv1_ (None, 39, 39, 32)
Conv1 (None, 20, 20, 32)
bn_Conv1 (None, 20, 20, 32)
Conv1_relu (None, 20, 20, 32)
expanded_conv_depthwise (None, 20, 20, 32)
expanded_conv_depthwise_BN (None, 20, 20, 32)
expanded_conv_depthwise_relu (None, 20, 20, 32)
expanded_conv_project (None, 20, 20, 16)
图层名称Conv1_
和Conv1
分别是新图层(strides = 1
)和旧图层(strides = 2
)。根据需要,现在我们删除层 Conv1
和 strides = 2
如下:
cnn_model._layers.pop(2) # remove Conv1
for i, l in enumerate(cnn_model.layers):
print(l.name, l.output_shape)
if i == 8: break
inputLayer [(None, 39, 39, 3)]
Conv1_ (None, 39, 39, 32)
bn_Conv1 (None, 20, 20, 32)
Conv1_relu (None, 20, 20, 32)
expanded_conv_depthwise (None, 20, 20, 32)
expanded_conv_depthwise_BN (None, 20, 20, 32)
expanded_conv_depthwise_relu (None, 20, 20, 32)
expanded_conv_project (None, 20, 20, 16)
expanded_conv_project_BN (None, 20, 20, 16)
现在,您有 cnn_model
个模型,其第一个 conv
层上有 strides = 1
。但是,如果您想知道这种方法和可能的问题,请参阅我与此相关的其他答案。