R 中分布的 MLE:fitdistrplus(SGT 分布),我该怎么做?

MLE of a distribution in R: fitdistrplus (SGT distribution), how do I do it?

对于 return 数据,我正在研究偏度和峰度对于 cVaR 计算的重要性。我们首先比较一些分布,通过使用包“fitdistrplus”在 R 中使用 fitdist() 估计分布的参数。但是,我们想对不同数量的分布执行此操作(参见图片:SGT、GT、SGED、GED、t、norm)。

下面是 SGT 的示例代码,其中存在一个问题:它为参数 p 和 q 的标准误差引入了 NaN。我也不知道如何准确地选择起始值。

SGTstart <- list(mu=0,sigma=2, lambda = 0.5, p=2, q=8)
SGTfit_R <- fitdistrplus::fitdist(data = as.vector(coredata(R)), distr = "sgt", method = "mle", SGTstart)
summary(SGTfit_R)

使其可重现的数据样本:return 我股票指数的向量

c("0", "-1,008599424", "0,73180187", "0,443174024", "-0,351935172", "-1,318784086", "-2,171323799", "1,270243431", "-0,761354019", "0,417350946", "0,906432976", "-0,066736422", "-0,867085373", "-0,119914361", "-0,300989601", "0,482518259", "0,787365385", "-1,443105439", "-0,318546686", "-3,467674998", "1,041540157", "1,371281289", "-1,176752782", "-1,116893343", "-0,127522915", "-0,658070287", "1,098348016", "0,296391358", "-0,810635352", "-0,041779322", "0,353974233", "0,120090141", "0,304927119", "-1,22772592", "0,040768364", "1,182218724", "0,123136685", "-0,682709972", "-0,174093506", "-0,539704174", "0,579080595", "0,326346169", "0,205503526", "-0,771928642", "1,490828799", "0,734822712", "-0,025733101", "0,246531452", "-0,695585736", "-0,732413919", "0,806417952", "0,396105099", "0,024558388", "-0,791232528", "0,730410255", "-1,438890702", "0,668400286", "1,440996039", "0,731823553", "0,177515522", "0,740085418", "0,926248628", "-0,63516084", "-0,89996829", "1,655117371", "0,501033581", "0,06526534", "1,320866692", "-0,496350734", "-0,10157668", "0,022333393", "-1,236934596", "-1,070586427", "0,661662029", "0,871334714", "0,758891429", "0,064748766", "-0,305132153", "-0,424033661", "1,223444774", "-0,441840866", "-0,661390655", "-2,148399329", "0,843067435", "0,601099664", "-0,329590349", "0,210791225", "-0,341341769", "-0,555892395", "0,624026986", "0,218851965", "-0,015859171", "0,524283138", "-0,855634719", "0,339281481", "0,038507713", "-1,943784688", "0,315857689", "-0,368982834", "-1,111684011", "-0,2409217", "0,421815833", "-0,079319721", "0,915338199", "0,537387704", "-0,023004636", "-0,331854888", "0,702733882", "-1,084343115", "0,16901282", "0,559404916", "-0,538587484", "0,153683523", "-0,336562411", "-0,274946953", "0,862901957", "0,117407383", "1,205205829", "0,633347347", "0,058712615", "-0,083562948", "1,343190727", "1,281380185", "0,750972389", "-1,538678151", "0,228222073", "0,635385022", "0,037379479", "-0,491444798", "-1,220272752", "1,093162287", "1,499512169", "0,041394336", "-0,113330512", "0,657485999", "-0,264647978", "0,115056075", "-0,009763771", "0,454629881", "0,322398317", "0,347112494", "0,948127411", "0,461194301", "-0,407013048", "-0,469481931", "-0,536045151", "0,114726251", "0,396772868", "0,525885581")

最好,享受

答案是使用包 sgt