XGBoost 在不同数据集中的训练循环
Training loop for XGBoost in different dataset
我开发了一些不同的数据集,我想编写一个 for 循环来对每个数据集进行训练,最后,我希望每个数据集都有 RMSE
。我尝试通过 for
循环,但它不起作用,因为它为每个数据集返回相同的值,而我知道它应该不同。我写的代码如下:
for i in NEW_middle_index:
DF = df1.iloc[i-100:i+100,:]
# Append an empty sublist inside the list
FINAL_DF.append(DF)
y = DF.iloc[:,3]
X = DF.drop(columns='Target')
index_train = int(0.7 * len(X))
X_train = X[:index_train]
y_train = y[:index_train]
X_test = X[index_train:]
y_test = y[index_train:]
scaler_x = MinMaxScaler().fit(X_train)
X_train = scaler_x.transform(X_train)
X_test = scaler_x.transform(X_test)
xgb_r = xg.XGBRegressor(objective ='reg:linear',
n_estimators = 20, seed = 123)
for i in range(len(NEW_middle_index)):
# print(i)
# Fitting the model
xgb_r.fit(X_train,y_train)
# Predict the model
pred = xgb_r.predict(X_test)
# RMSE Computation
rmse = np.sqrt(mean_squared_error(y_test,pred))
# print(rmse)
RMSE.append(rmse)
不确定是否缩进正确。您正在覆盖 X_train
和 X_test
,当您拟合模型时,它总是在同一个数据集上,因此您得到相同的结果。
一种选择是在创建训练/测试数据帧后拟合模型。否则,如果你想保留训练集/测试集,可能像下面这样,将它们存储在字典列表中,而无需更改太多代码:
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import xgboost as xg
df1 = pd.DataFrame(np.random.normal(0,1,(600,3)))
df1['Target'] = np.random.uniform(0,1,600)
NEW_middle_index = [100,300,500]
NEWDF = []
for i in NEW_middle_index:
y = df1.iloc[i-100:i+100:,3]
X = df1.iloc[i-100:i+100,:].drop(columns='Target')
index_train = int(0.7 * len(X))
scaler_x = MinMaxScaler().fit(X)
X_train = scaler_x.transform(X[:index_train])
y_train = y[:index_train]
X_test = scaler_x.transform(X[index_train:])
y_test = y[index_train:]
NEWDF.append({'X_train':X_train,'y_train':y_train,'X_test':X_test,'y_test':y_test})
然后我们拟合并计算RMSE:
RMSE = []
xgb_r = xg.XGBRegressor(objective ='reg:linear',n_estimators = 20, seed = 123)
for i in range(len(NEW_middle_index)):
xgb_r.fit(NEWDF[i]['X_train'],NEWDF[i]['y_train'])
pred = xgb_r.predict(NEWDF[i]['X_test'])
rmse = np.sqrt(mean_squared_error(NEWDF[i]['y_test'],pred))
RMSE.append(rmse)
RMSE
[0.3524827559800294, 0.3098101362502435, 0.3843173269966071]
我开发了一些不同的数据集,我想编写一个 for 循环来对每个数据集进行训练,最后,我希望每个数据集都有 RMSE
。我尝试通过 for
循环,但它不起作用,因为它为每个数据集返回相同的值,而我知道它应该不同。我写的代码如下:
for i in NEW_middle_index:
DF = df1.iloc[i-100:i+100,:]
# Append an empty sublist inside the list
FINAL_DF.append(DF)
y = DF.iloc[:,3]
X = DF.drop(columns='Target')
index_train = int(0.7 * len(X))
X_train = X[:index_train]
y_train = y[:index_train]
X_test = X[index_train:]
y_test = y[index_train:]
scaler_x = MinMaxScaler().fit(X_train)
X_train = scaler_x.transform(X_train)
X_test = scaler_x.transform(X_test)
xgb_r = xg.XGBRegressor(objective ='reg:linear',
n_estimators = 20, seed = 123)
for i in range(len(NEW_middle_index)):
# print(i)
# Fitting the model
xgb_r.fit(X_train,y_train)
# Predict the model
pred = xgb_r.predict(X_test)
# RMSE Computation
rmse = np.sqrt(mean_squared_error(y_test,pred))
# print(rmse)
RMSE.append(rmse)
不确定是否缩进正确。您正在覆盖 X_train
和 X_test
,当您拟合模型时,它总是在同一个数据集上,因此您得到相同的结果。
一种选择是在创建训练/测试数据帧后拟合模型。否则,如果你想保留训练集/测试集,可能像下面这样,将它们存储在字典列表中,而无需更改太多代码:
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import xgboost as xg
df1 = pd.DataFrame(np.random.normal(0,1,(600,3)))
df1['Target'] = np.random.uniform(0,1,600)
NEW_middle_index = [100,300,500]
NEWDF = []
for i in NEW_middle_index:
y = df1.iloc[i-100:i+100:,3]
X = df1.iloc[i-100:i+100,:].drop(columns='Target')
index_train = int(0.7 * len(X))
scaler_x = MinMaxScaler().fit(X)
X_train = scaler_x.transform(X[:index_train])
y_train = y[:index_train]
X_test = scaler_x.transform(X[index_train:])
y_test = y[index_train:]
NEWDF.append({'X_train':X_train,'y_train':y_train,'X_test':X_test,'y_test':y_test})
然后我们拟合并计算RMSE:
RMSE = []
xgb_r = xg.XGBRegressor(objective ='reg:linear',n_estimators = 20, seed = 123)
for i in range(len(NEW_middle_index)):
xgb_r.fit(NEWDF[i]['X_train'],NEWDF[i]['y_train'])
pred = xgb_r.predict(NEWDF[i]['X_test'])
rmse = np.sqrt(mean_squared_error(NEWDF[i]['y_test'],pred))
RMSE.append(rmse)
RMSE
[0.3524827559800294, 0.3098101362502435, 0.3843173269966071]