如何Fasten Knn算法进行实时人脸识别
How to Fasten Knn Algorithm for face recognition in real time
我正在做人脸检测和识别方面的工作,我想实时检测人脸,
但是到了训练点,训练
需要很长时间
数据是否有可能减少训练数据的时间任何人都可以提供帮助
我解决了这个问题
'''
def train(train_dir, model_save_path=None, n_neighbors=None, knn_algo='ball_tree', verbose=False):
X = []
y = []
# Loop through each person in the training set
for class_dir in tqdm(os.listdir(train_dir)):
if not os.path.isdir(os.path.join(train_dir, class_dir)):
continue
# Loop through each training image for the current person
for img_path in image_files_in_folder(os.path.join(train_dir, class_dir)):
image = face_recognition.load_image_file(img_path)
face_bounding_boxes = face_recognition.face_locations(image)
if len(face_bounding_boxes) != 1:
# If there are no people (or too many people) in a training image, skip the image.
if verbose:
print("Image {} not suitable for training: {}".format(img_path, "Didn't find a face" if len(face_bounding_boxes) < 1 else "Found more than one face"))
else:
# Add face encoding for current image to the training set
X.append(face_recognition.face_encodings(image, known_face_locations=face_bounding_boxes)[0])
y.append(class_dir.split('_')[0])
# Determine how many neighbors to use for weighting in the KNN classifier
if n_neighbors is None:
n_neighbors = int(round(math.sqrt(len(X))))
if verbose:
print("Chose n_neighbors automatically:", n_neighbors)
# Create and train the KNN classifier
knn_clf = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm=knn_algo, weights='distance')
print(knn_clf)
knn_clf.fit(X, y)
# Save the trained KNN classifier
if model_save_path is not None:
with open(model_save_path, 'wb') as f:
pickle.dump(knn_clf, f)
return knn_clf
'''
这是最后的决定
'''
def trainer():
# STEP 1: Train the KNN classifier and save it to disk
# Once the model is trained and saved, you can skip this step next time.
print("Training KNN classifier...")
classifier = train("app/facerec/dataset", model_save_path="app/facerec/models/trained_model.clf", n_neighbors=3)
print("Training complete!")
'''
还想知道是否有可能不重写 'trained_model.clf' 文件,我们可以更新文件。
k-nn算法的时间复杂度为O(n)。我建议您使用近似最近邻 (a-nn) 算法。它的时间复杂度太低了。比如Google图片搜索就是基于这个算法。
Spotify annoy、Facebook faiss、nmslib 是 a-nn 库。
训练 kNN 模型不应强加高运行时开销。毕竟,直接(“精确搜索”)模型是懒惰的。它存储向量并在查询(或分类)时执行强力搜索。
我推测嵌入计算占据了您的训练时间。
如@johncasey 所述,您可能希望使用近似 kNN 模型(或 similarity search engines). There are many open-source similarity search libraries. Yet, if you need a production-ready, robust, real-time, efficient solution, then you should check out pinecone.io。(免责声明,我在 Pinecone 工作。)
我正在做人脸检测和识别方面的工作,我想实时检测人脸,
但是到了训练点,训练
需要很长时间数据是否有可能减少训练数据的时间任何人都可以提供帮助
我解决了这个问题
'''
def train(train_dir, model_save_path=None, n_neighbors=None, knn_algo='ball_tree', verbose=False):
X = []
y = []
# Loop through each person in the training set
for class_dir in tqdm(os.listdir(train_dir)):
if not os.path.isdir(os.path.join(train_dir, class_dir)):
continue
# Loop through each training image for the current person
for img_path in image_files_in_folder(os.path.join(train_dir, class_dir)):
image = face_recognition.load_image_file(img_path)
face_bounding_boxes = face_recognition.face_locations(image)
if len(face_bounding_boxes) != 1:
# If there are no people (or too many people) in a training image, skip the image.
if verbose:
print("Image {} not suitable for training: {}".format(img_path, "Didn't find a face" if len(face_bounding_boxes) < 1 else "Found more than one face"))
else:
# Add face encoding for current image to the training set
X.append(face_recognition.face_encodings(image, known_face_locations=face_bounding_boxes)[0])
y.append(class_dir.split('_')[0])
# Determine how many neighbors to use for weighting in the KNN classifier
if n_neighbors is None:
n_neighbors = int(round(math.sqrt(len(X))))
if verbose:
print("Chose n_neighbors automatically:", n_neighbors)
# Create and train the KNN classifier
knn_clf = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm=knn_algo, weights='distance')
print(knn_clf)
knn_clf.fit(X, y)
# Save the trained KNN classifier
if model_save_path is not None:
with open(model_save_path, 'wb') as f:
pickle.dump(knn_clf, f)
return knn_clf
'''
这是最后的决定
'''
def trainer():
# STEP 1: Train the KNN classifier and save it to disk
# Once the model is trained and saved, you can skip this step next time.
print("Training KNN classifier...")
classifier = train("app/facerec/dataset", model_save_path="app/facerec/models/trained_model.clf", n_neighbors=3)
print("Training complete!")
'''
还想知道是否有可能不重写 'trained_model.clf' 文件,我们可以更新文件。
k-nn算法的时间复杂度为O(n)。我建议您使用近似最近邻 (a-nn) 算法。它的时间复杂度太低了。比如Google图片搜索就是基于这个算法。
Spotify annoy、Facebook faiss、nmslib 是 a-nn 库。
训练 kNN 模型不应强加高运行时开销。毕竟,直接(“精确搜索”)模型是懒惰的。它存储向量并在查询(或分类)时执行强力搜索。
我推测嵌入计算占据了您的训练时间。
如@johncasey 所述,您可能希望使用近似 kNN 模型(或 similarity search engines). There are many open-source similarity search libraries. Yet, if you need a production-ready, robust, real-time, efficient solution, then you should check out pinecone.io。(免责声明,我在 Pinecone 工作。)