模型(从 Keras 导入)导致 TensorflowJS 内存泄漏
Model (imported from Keras) causes Memory leak in TensorflowJS
我在 Python 中用 tf.keras
训练了一个图像分割模型,保存它并用 tensorflow.js 重新加载它(在网络应用程序中使用它)。
Python(转移模型):
import tensorflow as tf
import tensorflowjs as tfjs
model = tf.keras.models.load_model('model')
tfjs.converters.save_keras_model(model, 'tfjs_model/')
在 Javascript 中,我加载了我的模型(Unet with MobileNet backbone)AND 一个 MobileNet基于 body-pix 的分割模型(比较两个模型):
<head>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-converter"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/body-pix"></script>
...
</head>
<body>
...
const model_lib = await bodyPix.load();
// NumBytesInGPU: 5349984 (every log)
const model_own = await tf.loadLayersModel('mobilenet_test/model.json');
// NumBytesInGPU: 36930448 (1st log), 53707664 (5th log)
</body>
这样做效果很好,所有内容都可以无误地加载。然而,当尝试根据视频进行预测时,tf.memory()
会增加直到应用程序崩溃,而 body-pix 模型运行平稳。
async function body_segment() {
const frame = document.getElementById("camera");
const canvas = document.getElementById("body_pix");
const draw = canvas.getContext("2d");
// const model = await bodyPix.load();
// NumBytesInGPU: 5349984
const model = await tf.loadLayersModel('mobile_net.json');
// NumBytesInGPU: 36930448 (1st log), 53707664 (5th log)
const runPrediction = function(input) {
return tf.tidy(() => {
const asFloat = tf.cast(input, 'float32');
const asBatch = tf.expandDims(asFloat, 0);
const results = model.predict(asBatch);
// Normally do something additional here, but removed due to debug reasons
return results
});
}
const resized = function(input) {
return tf.tidy(() => {
let imageTensor = tf.browser.fromPixels(input);
return tf.image.resizeBilinear(imageTensor, [512, 512]);
})
}
let ctr = 0;
while (ctr < 10) {
console.log("memory", tf.memory());
// !!!!! THIS FUNCTION CAUSES THE MEMORY LEAK, BUT WHY ?????
const result = await runPrediction(resized(video));
// const result = await model.segmentPersonParts(frame);
// do something with prediction here ...
result.dispose(); // remove results from prediction to clean the memory
ctr+=1;
await tf.nextFrame();
}
}
我尝试使用与 body-pix 文件中完全相同的代码。此外,我一直使用 tidy 函数,所以实际上,它应该对所有内容进行垃圾回收。
是否与 Keras 导入有关?或者内存泄漏还有什么问题?
而不是:
const result = await runPrediction(resized(video));
// do smt
result.dispose();
使用
const res = await resized(video);
const result = await runPrediction(res);
res.dispose();
// do smt
result.dispose();
否则不会处理中间结果
我在 Python 中用 tf.keras
训练了一个图像分割模型,保存它并用 tensorflow.js 重新加载它(在网络应用程序中使用它)。
Python(转移模型):
import tensorflow as tf
import tensorflowjs as tfjs
model = tf.keras.models.load_model('model')
tfjs.converters.save_keras_model(model, 'tfjs_model/')
在 Javascript 中,我加载了我的模型(Unet with MobileNet backbone)AND 一个 MobileNet基于 body-pix 的分割模型(比较两个模型):
<head>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-converter"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/body-pix"></script>
...
</head>
<body>
...
const model_lib = await bodyPix.load();
// NumBytesInGPU: 5349984 (every log)
const model_own = await tf.loadLayersModel('mobilenet_test/model.json');
// NumBytesInGPU: 36930448 (1st log), 53707664 (5th log)
</body>
这样做效果很好,所有内容都可以无误地加载。然而,当尝试根据视频进行预测时,tf.memory()
会增加直到应用程序崩溃,而 body-pix 模型运行平稳。
async function body_segment() {
const frame = document.getElementById("camera");
const canvas = document.getElementById("body_pix");
const draw = canvas.getContext("2d");
// const model = await bodyPix.load();
// NumBytesInGPU: 5349984
const model = await tf.loadLayersModel('mobile_net.json');
// NumBytesInGPU: 36930448 (1st log), 53707664 (5th log)
const runPrediction = function(input) {
return tf.tidy(() => {
const asFloat = tf.cast(input, 'float32');
const asBatch = tf.expandDims(asFloat, 0);
const results = model.predict(asBatch);
// Normally do something additional here, but removed due to debug reasons
return results
});
}
const resized = function(input) {
return tf.tidy(() => {
let imageTensor = tf.browser.fromPixels(input);
return tf.image.resizeBilinear(imageTensor, [512, 512]);
})
}
let ctr = 0;
while (ctr < 10) {
console.log("memory", tf.memory());
// !!!!! THIS FUNCTION CAUSES THE MEMORY LEAK, BUT WHY ?????
const result = await runPrediction(resized(video));
// const result = await model.segmentPersonParts(frame);
// do something with prediction here ...
result.dispose(); // remove results from prediction to clean the memory
ctr+=1;
await tf.nextFrame();
}
}
我尝试使用与 body-pix 文件中完全相同的代码。此外,我一直使用 tidy 函数,所以实际上,它应该对所有内容进行垃圾回收。
是否与 Keras 导入有关?或者内存泄漏还有什么问题?
而不是:
const result = await runPrediction(resized(video));
// do smt
result.dispose();
使用
const res = await resized(video);
const result = await runPrediction(res);
res.dispose();
// do smt
result.dispose();
否则不会处理中间结果