PyTorch 布尔值 - 停止反向传播?

PyTorch Boolean - Stop Backpropagation?

我需要创建一个神经网络,我在其中使用二进制门将某些张量归零,这些张量是禁用电路的输出。

为了提高运行速度,我期待使用 torch.bool 二元门来阻止网络中禁用电路的反向传播。但是,我使用 CIFAR-10 数据集的官方 PyTorch 示例创建了一个小实验,运行速度对于 gate_Agate_B 的任何值都完全相同:(这意味着这个想法行不通)

class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.pool = nn.MaxPool2d(2, 2)
        self.conv1a = nn.Conv2d(3, 6, 5)
        self.conv2a = nn.Conv2d(6, 16, 5)
        self.conv1b = nn.Conv2d(3, 6, 5)
        self.conv2b = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(32 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
        
    def forward(self, x):
        # Only one gate is supposed to be enabled at random
        # However, for the experiment, I fixed the values to [1,0] and [1,1]
        choice  =  randint(0,1)
        gate_A  =  torch.tensor(choice   ,dtype = torch.bool) 
        gate_B  =  torch.tensor(1-choice ,dtype = torch.bool) 
        
        a = self.pool(F.relu(self.conv1a(x)))
        a = self.pool(F.relu(self.conv2a(a)))
        
        b = self.pool(F.relu(self.conv1b(x)))
        b = self.pool(F.relu(self.conv2b(b)))
        
        a *= gate_A
        b *= gate_B
        x  = torch.cat( [a,b], dim = 1 )
        
        x = torch.flatten(x, 1) # flatten all dimensions except batch
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

我如何定义 gate_Agate_B 以便反向传播在它们为零时有效停止?

PS。在运行时动态更改 concatenation 也会更改分配给每个模块的权重。 (例如,与 a 关联的权重可以在另一遍中分配给 b,从而破坏网络的运行方式)。

你可以使用torch.no_grad(下面的代码可能会更简洁):

def forward(self, x):
        # Only one gate is supposed to be enabled at random
        # However, for the experiment, I fixed the values to [1,0] and [1,1]
        choice  =  randint(0,1)
        gate_A  =  torch.tensor(choice   ,dtype = torch.bool) 
        gate_B  =  torch.tensor(1-choice ,dtype = torch.bool) 
        
        if choice:
            a = self.pool(F.relu(self.conv1a(x)))
            a = self.pool(F.relu(self.conv2a(a)))
            a *= gate_A
            
            with torch.no_grad(): # disable gradient computation
                b = self.pool(F.relu(self.conv1b(x)))
                b = self.pool(F.relu(self.conv2b(b)))
                b *= gate_B
        else:
            with torch.no_grad(): # disable gradient computation
                a = self.pool(F.relu(self.conv1a(x)))
                a = self.pool(F.relu(self.conv2a(a)))
                a *= gate_A
            
            b = self.pool(F.relu(self.conv1b(x)))
            b = self.pool(F.relu(self.conv2b(b)))
            b *= gate_B

        x  = torch.cat( [a,b], dim = 1 )
        
        x = torch.flatten(x, 1) # flatten all dimensions except batch
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

再看一遍,我认为以下是针对特定问题的更简单的解决方案:

def forward(self, x):
        # Only one gate is supposed to be enabled at random
        # However, for the experiment, I fixed the values to [1,0] and [1,1]
        choice  =  randint(0,1)

        if choice:
            a = self.pool(F.relu(self.conv1a(x)))
            a = self.pool(F.relu(self.conv2a(a)))
            b = torch.zeros(shape_of_conv_output) # replace shape of conv output here
        else:
            b = self.pool(F.relu(self.conv1b(x)))
            b = self.pool(F.relu(self.conv2b(b)))
            a = torch.zeros(shape_of_conv_output) # replace shape of conv output here
       
        x  = torch.cat( [a,b], dim = 1 )
        
        x = torch.flatten(x, 1) # flatten all dimensions except batch
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

简单的解决方案,当 ab 被禁用时,只需用零定义一个张量:)

class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.pool = nn.MaxPool2d(2, 2)
        self.conv1a = nn.Conv2d(3, 6, 5)
        self.conv2a = nn.Conv2d(6, 16, 5)
        self.conv1b = nn.Conv2d(3, 6, 5)
        self.conv2b = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(32 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
        
    def forward(self, x):
        
        if randint(0,1):
            a = self.pool(F.relu(self.conv1a(x)))
            a = self.pool(F.relu(self.conv2a(a)))
            b = torch.zeros_like(a)
        else:
            b = self.pool(F.relu(self.conv1b(x)))
            b = self.pool(F.relu(self.conv2b(b)))
            a = torch.zeros_like(b)
        
        x  = torch.cat( [a,b], dim = 1 )
        
        x = torch.flatten(x, 1) # flatten all dimensions except batch
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

PS。我一边喝咖啡一边想这个。