在 Python 中绘制 4D 数据热图
Plot 4D data heatmap in Python
嘿,我如何在 3D 中绘制 2D 热图?现在我创建一个 python 脚本来使用来自 CSV 的数据(CSV 格式:x、y、z、v)制作二维热图图。
例如:
第一个 csv
0,000;-110,000;110,000;0,101
第二个 csv
0,000;-66,000;110,000;0,104
第三个 csv
0,000;-22,000;110,000;0,119
.....
在此示例中,它是 xz 平面中的热图,我创建了例如还有五个地块,这样我就可以在 3D 房间中插入六个 xz 平面地块。
在 中有一个很好的例子。但我不知道如何在我的情况下使用它。
import numpy as np
import os
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
'Create a list for every parameter'
x = []
y = []
z = []
v = []
file_path = "path/."
'Insert data from csv into lists'
for root, dirs, files in os.walk(file_path, topdown=False):
for name in files:
if name[-4:] != '.csv': continue
with open(os.path.join(root, name)) as data:
data = np.genfromtxt((line.replace(',', '.') for line in data), delimiter=";")
if data[1] == 22:
x.append(data[0])
y.append(data[1])
z.append(data[2])
v.append(data[3])
'Create axis data'
xi = np.linspace(min(x), max(x), 1000)
zi = np.linspace(min(z), max(z), 1000)
vi = griddata((x, z), v, (xi[None,:], zi[:,None]), method='cubic')
'Create the contour plot'
CS = plt.contourf(xi, zi, vi, 20, cmap=plt.cm.rainbow)
plt.title("Heatmap xz-plane", y=1.05,
fontweight="bold")
plt.xlabel("length x in cm")
plt.xticks(np.arange(0, 201, step=40))
plt.ylabel("height z in cm")
plt.yticks(np.arange(110, 251, step=20))
cbar = plt.colorbar()
cbar.set_label("velocity v in m/s", labelpad=10)
plt.savefig('testplot.png', dpi=400)
plt.show()
正在满足@keepAlive 的要求,希望看到他未经测试的答案的结果...:[=41=]
它确实很好用:-)
免责声明:我是的作者,所以我认为copying/pasting我自己不是问题。
请注意,您的数据集看起来(至少)不是 3 维的。但我假设存在不情愿的选择偏差。
您首先需要汇总每个海拔高度的“点数”,我认为这是您的向量的第三个组成部分。一旦收集起来,它们将构成您的位面。
# libraries
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import scipy.interpolate as si
from matplotlib import cm
import collections as co # <------------------
import pandas as pd
import numpy as np
planes = co.defaultdict(list)
for root, dirs, files in os.walk(file_path, topdown=False):
# [...]
# [...]
# [...]
# [...]
# [...]
level = data[2] # <------ third component.
planes[level].append(data)
现在,在那个阶段,我们每个 level
都有一个数组列表。让我们定义我们的 grids_maker
函数
def grids_maker(arrays_list, colnames=list('xyzg')):
# 0- The idea behind `list('xyzg')` is only to change the order
# of names, not the names as such. In case for example you
# want to use another component than the third to organize
# your planes.
# 1- Instantiate a dataframe so as to minimize the modification
# of the function copied/pasted pasted from
#
# 2- Pandas is also going to do some other jobs for us, such as
# stacking arrays, etc....
df = pd.DataFrame(arrays_list, columns=colnames)
# Make things more legible
xy = df.loc[:, ['x', 'y']]
x = xy.x
y = xy.y
z = df.z
g = df.g
reso_x = reso_y = 50
interp = 'cubic' # or 'nearest' or 'linear'
# Convert the 4d-space's dimensions into grids
grid_x, grid_y = np.mgrid[
x.min():x.max():1j*reso_x,
y.min():y.max():1j*reso_y
]
grid_z = si.griddata(
xy, z.values,
(grid_x, grid_y),
method=interp
)
grid_g = si.griddata(
xy, g.values,
(grid_x, grid_y),
method=interp
)
return {
'x' : grid_x,
'y' : grid_y,
'z' : grid_z,
'g' : grid_g,
}
让我们对我们的数组列表使用 grids_maker
并获取每个 z 级别的第 4 维的极值。
g_mins = []
g_maxs = []
lgrids = {}
for level, arrays_list in planes.items():
lgrids[level] = grids = grids_maker(arrays_list)
g_mins.append(grids['g'].min())
g_maxs.append(grids['g'].max())
让我们创建我们的(所有文件统一的)色标并显示绘图。
# Create the 4th color-rendered dimension
scam = plt.cm.ScalarMappable(
norm=cm.colors.Normalize(min(g_mins), max(g_maxs)),
cmap='jet' # see https://matplotlib.org/examples/color/colormaps_reference.html
)
fig = plt.figure()
ax = fig.gca(projection='3d')
for grids in lgrids.values():
scam.set_array([])
ax.plot_surface(
grids['x'], grids['y'], grids['z'],
facecolors = scam.to_rgba(grids['g']),
antialiased = True,
rstride=1, cstride=1, alpha=None
)
plt.show()
我很高兴看到结果。
嘿,我如何在 3D 中绘制 2D 热图?现在我创建一个 python 脚本来使用来自 CSV 的数据(CSV 格式:x、y、z、v)制作二维热图图。 例如:
第一个 csv
0,000;-110,000;110,000;0,101
第二个 csv
0,000;-66,000;110,000;0,104
第三个 csv
0,000;-22,000;110,000;0,119
.....
在此示例中,它是 xz 平面中的热图,我创建了例如还有五个地块,这样我就可以在 3D 房间中插入六个 xz 平面地块。
在
import numpy as np
import os
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
'Create a list for every parameter'
x = []
y = []
z = []
v = []
file_path = "path/."
'Insert data from csv into lists'
for root, dirs, files in os.walk(file_path, topdown=False):
for name in files:
if name[-4:] != '.csv': continue
with open(os.path.join(root, name)) as data:
data = np.genfromtxt((line.replace(',', '.') for line in data), delimiter=";")
if data[1] == 22:
x.append(data[0])
y.append(data[1])
z.append(data[2])
v.append(data[3])
'Create axis data'
xi = np.linspace(min(x), max(x), 1000)
zi = np.linspace(min(z), max(z), 1000)
vi = griddata((x, z), v, (xi[None,:], zi[:,None]), method='cubic')
'Create the contour plot'
CS = plt.contourf(xi, zi, vi, 20, cmap=plt.cm.rainbow)
plt.title("Heatmap xz-plane", y=1.05,
fontweight="bold")
plt.xlabel("length x in cm")
plt.xticks(np.arange(0, 201, step=40))
plt.ylabel("height z in cm")
plt.yticks(np.arange(110, 251, step=20))
cbar = plt.colorbar()
cbar.set_label("velocity v in m/s", labelpad=10)
plt.savefig('testplot.png', dpi=400)
plt.show()
正在满足@keepAlive 的要求,希望看到他未经测试的答案的结果...:[=41=]
它确实很好用:-)
免责声明:我是
请注意,您的数据集看起来(至少)不是 3 维的。但我假设存在不情愿的选择偏差。
您首先需要汇总每个海拔高度的“点数”,我认为这是您的向量的第三个组成部分。一旦收集起来,它们将构成您的位面。
# libraries
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import scipy.interpolate as si
from matplotlib import cm
import collections as co # <------------------
import pandas as pd
import numpy as np
planes = co.defaultdict(list)
for root, dirs, files in os.walk(file_path, topdown=False):
# [...]
# [...]
# [...]
# [...]
# [...]
level = data[2] # <------ third component.
planes[level].append(data)
现在,在那个阶段,我们每个 level
都有一个数组列表。让我们定义我们的 grids_maker
函数
def grids_maker(arrays_list, colnames=list('xyzg')):
# 0- The idea behind `list('xyzg')` is only to change the order
# of names, not the names as such. In case for example you
# want to use another component than the third to organize
# your planes.
# 1- Instantiate a dataframe so as to minimize the modification
# of the function copied/pasted pasted from
#
# 2- Pandas is also going to do some other jobs for us, such as
# stacking arrays, etc....
df = pd.DataFrame(arrays_list, columns=colnames)
# Make things more legible
xy = df.loc[:, ['x', 'y']]
x = xy.x
y = xy.y
z = df.z
g = df.g
reso_x = reso_y = 50
interp = 'cubic' # or 'nearest' or 'linear'
# Convert the 4d-space's dimensions into grids
grid_x, grid_y = np.mgrid[
x.min():x.max():1j*reso_x,
y.min():y.max():1j*reso_y
]
grid_z = si.griddata(
xy, z.values,
(grid_x, grid_y),
method=interp
)
grid_g = si.griddata(
xy, g.values,
(grid_x, grid_y),
method=interp
)
return {
'x' : grid_x,
'y' : grid_y,
'z' : grid_z,
'g' : grid_g,
}
让我们对我们的数组列表使用 grids_maker
并获取每个 z 级别的第 4 维的极值。
g_mins = []
g_maxs = []
lgrids = {}
for level, arrays_list in planes.items():
lgrids[level] = grids = grids_maker(arrays_list)
g_mins.append(grids['g'].min())
g_maxs.append(grids['g'].max())
让我们创建我们的(所有文件统一的)色标并显示绘图。
# Create the 4th color-rendered dimension
scam = plt.cm.ScalarMappable(
norm=cm.colors.Normalize(min(g_mins), max(g_maxs)),
cmap='jet' # see https://matplotlib.org/examples/color/colormaps_reference.html
)
fig = plt.figure()
ax = fig.gca(projection='3d')
for grids in lgrids.values():
scam.set_array([])
ax.plot_surface(
grids['x'], grids['y'], grids['z'],
facecolors = scam.to_rgba(grids['g']),
antialiased = True,
rstride=1, cstride=1, alpha=None
)
plt.show()
我很高兴看到结果。