如何从 t 检验创建箱线图
How to create a boxplot from t -test
这是我已有的代码和数据:
library(tidyverse)
t.test(BMIS ~ CONDITION, var.equal =TRUE, data = BMIS_DATA)
descriptive_statistics = BMIS_DATA %>%
group_by(CONDITION) %>%
summarise(
mean = mean (BMIS),
sd = sd (BMIS),
n = n ()
)
view(descriptive_statistics)
mean_difference = descriptive_statistics [1,2] - descriptive_statistics [2,2]
这给了我:
Two Sample t-test
data: BMIS by CONDITION
t = 3.7455, df = 44, p-value = 0.0005201
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
4.299781 14.317362
sample estimates:
mean in group HAPPY mean in group SAD
45.88000 36.57143
如何从中创建一些视觉数据?
如果我正确理解了你的问题,你可以很容易地根据你的 CONDITION 变量表示分布。
以下代码允许您从箱线图中看到这一点:
library(ggplot2)
ggplot(BMIS_DATA,aes(x=CONDITION,y=BMIS,col=CONDITION))+geom_boxplot()
然后就可以应用ggplot2包的经典函数了。自定义:?geom_boxplot
.
这是我已有的代码和数据:
library(tidyverse)
t.test(BMIS ~ CONDITION, var.equal =TRUE, data = BMIS_DATA)
descriptive_statistics = BMIS_DATA %>%
group_by(CONDITION) %>%
summarise(
mean = mean (BMIS),
sd = sd (BMIS),
n = n ()
)
view(descriptive_statistics)
mean_difference = descriptive_statistics [1,2] - descriptive_statistics [2,2]
这给了我:
Two Sample t-test
data: BMIS by CONDITION
t = 3.7455, df = 44, p-value = 0.0005201
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
4.299781 14.317362
sample estimates:
mean in group HAPPY mean in group SAD
45.88000 36.57143
如何从中创建一些视觉数据?
如果我正确理解了你的问题,你可以很容易地根据你的 CONDITION 变量表示分布。 以下代码允许您从箱线图中看到这一点:
library(ggplot2)
ggplot(BMIS_DATA,aes(x=CONDITION,y=BMIS,col=CONDITION))+geom_boxplot()
然后就可以应用ggplot2包的经典函数了。自定义:?geom_boxplot
.