保留所有不同的列,而不是一个 r

keep all distinct columns, instead of one r

我正在尝试查找已发送给 4 个或更多独立接收者(按名称)的所有发件人,其中发送给这些独立接收者的总金额超过 $5000.00 并寻找一种方法告诉 r 维护所有值包含不同的名称,而不仅仅是一个。

例如,使用以下 data.frame:

sender<-c("tom","tom","kevin","frank","tom","chris","tom","tom","craig","louis",
      "john", "tom","brian","tom","George")
reciever<-c("ryan","dave","sarah","kel","eric","ben","wayne","mike","brenda","christina",
        "brianna","hal","sam","ryan","van")
amount<-as.numeric(c("200","100","300","3000","100","350","100","90","670","865","600",
      "300","1300","5200","200"))
dF<-data.frame(sender,reciever,amount)

使用 dpylr 应用以下参数:

dF1<-dF%>%
  distinct(reciever,.keep_all = TRUE)%>%
  group_by(sender)%>%
  summarise(
    count=n(),
    total = sum(amount)  
  )%>%
  filter(count >= 4 & total>5000) 

您会注意到示例发件人向量中的目标是 tom。 tom 与 Ryan 有 2 笔交易,但是,由于 distinct 函数的性质,r 拉取第一列与 ryan 的对应金额为 200,并排除另一列与 ryan 的金额,即 5200。这种排除存在问题,因为被排除的交易(如果包括在内)将符合过滤器中应用的 5000 美元阈值的逻辑。

有没有一种方法可以使用 distinct 函数来告诉 r 保留所有出现的涉及相似不同名称的事件?或者,我应该从一个完全不同的角度来处理这个问题吗?

谢谢!

我们可以使用

library(dplyr)
dF %>%
    group_by(sender) %>% 
    filter(n_distinct(reciever) >=4, sum(amount) >=5000) %>%
    ungroup

-输出

# A tibble: 7 x 3
  sender reciever amount
  <chr>  <chr>     <dbl>
1 tom    ryan        200
2 tom    dave        100
3 tom    eric        100
4 tom    wayne       100
5 tom    mike         90
6 tom    hal         300
7 tom    ryan       5200

如果我们只需要满足条件的那些对

dF %>%
     group_by(sender) %>% 
     filter(n_distinct(reciever) >=4, sum(amount) >=5000) %>%
     group_by(sender, reciever) %>% filter(sum(amount) >= 5000)
# A tibble: 2 x 3
# Groups:   sender, reciever [1]
#  sender reciever amount
#  <chr>  <chr>     <dbl>
#1 tom    ryan        200
#2 tom    ryan       5200