为什么 Hypothesis 给出了一个伪造的例子,当用 numpy 数组手动复制时不会失败?

Why did Hypothesis give a falsifying example, when manually reproducing with numpy arrays does not fail?

我试图编写我的第一个超简单的 numpy 测试用例,但我想到的第一件事似乎遇到了障碍。

所以我这样做了:

import numpy as np
from hypothesis import given
import hypothesis.strategies as hs
import hypothesis.extra.numpy as hxn
    
def tstind(a, i):
     i = max(i, 0)
     i = min(i, len(a)-1)
     return a[i]
     
@given(a=hxn.arrays(dtype=hxn.scalar_dtypes(),
       shape=hxn.array_shapes(max_dims=1)),
       i=hs.integers())
def test_tstind_typeconserve(a, i):
     assert tstind(a, i).dtype == a.dtype
     
test_tstind_typeconserve()

伪造示例:

test_tstind_typeconserve(
    a=array([0.], dtype=float16), i=0,
)

错误:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 2, in test_tstind_typeconserve
  File "/tmp/persistent/miniconda3/envs/hypo/lib/python3.7/site-packages/hypothesis/core.py", line 1169, in wrapped_test
    raise the_error_hypothesis_found
  File "<stdin>", line 5, in test_tstind_typeconserve
AssertionError

但是:

a=np.array([0.], dtype=np.float16)
i=0
assert tstind(a, i).dtype == a.dtype

(即OK,不会失败)

顺便说一句,我 期待 它找到的奇怪情况是这样的:

a=np.ma.masked_array([0.], mask=[1], dtype=np.float16)
a.dtype
dtype('float16')
a[0].dtype
dtype('float64')

假设表明 Numpy 数据类型有 distinct byte orders。扩展您的测试,

    got = tstind(a, i).dtype
    assert got == a.dtype, (a.dtype.byteorder, got.byteorder)

我用 AssertionError: ('>', '=') 失败了。不幸的是,数组对象的 repr 不包括 dtype 字节顺序,但我们在这里。

(我将其报告为 issue 19059,这是值得的)