Tensorflow model.summary() 不显示图层信息

Tensorflow model.summary() not showing layers information

我在使用 Keras 的函数 API 执行迁移学习时遇到问题。 summary() 函数不显示新模型信息的层次。 这是我 运行 导入模型的代码:

import tensorflow as tf
from tensorflow import keras 
from keras.models import Model
model = tf.keras.applications.VGG16()
model.summary()

不出所料,输出是正确的:

Model: "vgg16"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_4 (InputLayer)         [(None, 224, 224, 3)]     0         
_________________________________________________________________
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________
flatten (Flatten)            (None, 25088)             0         
_________________________________________________________________
fc1 (Dense)                  (None, 4096)              102764544 
_________________________________________________________________
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________
predictions (Dense)          (None, 1000)              4097000   
=================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
_________________________________________________________________

下面是我通过删除模型的最后 2 层来执行迁移学习的代码:

model2 = Model(model.input, model.layers[-2].output)
model2.summary()

这是输出:

Model: "model_8"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
Total params: 134,260,544
Trainable params: 134,260,544
Non-trainable params: 0
_________________________________________________________________

与图层相关的所有信息都消失了...这是函数 API 的正常行为吗?

提前致谢。

不要混用 tensorflow 2.x 和独立 keras。你应该使用

from tensorflow import keras 
from tensorflow.keras.models import Model # < --- import from tf

我已经在 tensorflow 版本 2.5.0 上试过了。它不显示图层信息。 所以像这样导入。

from tensorflow import keras

model = keras.Model(....)

model.summary()