Fillna 通过使用创建的函数关联多个列

Fillna by relating multiple columns using a created function

我在数据框中有 3 列。 houses = ["house 1", "house 2", "house 3", "house 4", "house 5", "house 6", "house 7", "house 8", "house 9"] room = ["厨房", "浴室", "卧室"] m2 = [8.4.7, NaN, NaN, NaN, 6.3.7]。 我想要做的是用我设置的模式填充空白,这将是: 如果房间列为厨房,则m2为5。如果房间列为浴室,则m2为2。如果房间列为卧室,m2为4。

Input:
    houses      room        m2
0   house 1  Kitchen         8
1   house 2  Bathroom        4
2   house 3  Bedroom         7   
3   house 4  Kitchen       NaN
4   house 5  Bathroom      NaN
5   house 6  Bedroom       NaN
6   house 7  Kitchen         6
7   house 8  Bathroom        3
8   house 9  Bedroom         7

Tried df.loc[(df["m2"].isnull() & df["room"] == "Kitchen"), "m2"] == 5
df.loc [(df ["m2"]. isnull () & df ["room"] == "Bathroom"), "m2"] == 2
df.loc [(df ["m2"]. isnull () & df ["room"] == "Bedroom"), "m2"] == 4

but it did not work.

FutureWarning: elementwise comparison failed; returning scalar, but in the future will perform elementwise comparison

Expected output:

    houses      room        m2
0   house 1  Kitchen         8
1   house 2  Bathroom        4
2   house 3  Bedroom         7   
3   house 4  Kitchen         5
4   house 5  Bathroom        2
5   house 6  Bedroom         4
6   house 7  Kitchen         6
7   house 8  Bathroom        3
8   house 9  Bedroom         7

一个fillna + map选项:

df['m2'] = df['m2'].fillna(
    df['room'].map({'Kitchen': 5, 'Bathroom': 2, 'Bedroom': 4})
).astype(int)

一个np.where + replace选项:

df['m2'] = np.where(
    df['m2'].isna(),
    df['room'].replace({'Kitchen': 5, 'Bathroom': 2, 'Bedroom': 4}),
    df['m2']
).astype(int)

    houses      room  m2
0  house 1   Kitchen   8
1  house 2  Bathroom   4
2  house 3   Bedroom   7
3  house 4   Kitchen   5
4  house 5  Bathroom   2
5  house 6   Bedroom   4
6  house 7   Kitchen   6
7  house 8  Bathroom   3
8  house 9   Bedroom   7