Pandas dataframe 将行值重塑为新列(矩阵类型格式)

Pandas dataframe reshape row values into new columns (matrix type format)

我是 pandas 的新手,正在寻找有关如何重塑数据框的建议:

目前,我有这样一个数据框。

panelist_id type type_count refer_sm_count refer_se_count refer_non_n_count
1 HP 2 2 1 1
1 PB 1 0 1 0
1 TN 3 0 3 0
2 HP 1 1 0 0
2 PB 2 1 1 0 0

理想情况下,我希望我的数据框看起来像这样:

panelist_id type_HP_count type_PB_count type_TN_count refer_sm_count_HP refer_se_count_HP refer_non_n_count_HP refer_sm_count_PB refer_se_count_PB refer_non_n_count_PB refer_sm_count_TN refer_se_count_TN refer_non_n_count_TN
1 2 1 3 2 1 0 0 1 0 0 0 0
2 1 2 0 1 0 0 1 1 0 0 0 0

基本上,我需要将 'type' 列中的不同行值转换为新列,显示每种类型的计数。标题为 'refer' 的原始 df 的接下来三列需要说明每个不同的 'type'。例如,refers_sm_count_[来自类型 X(例如,HP)]。任何帮助将非常感激。谢谢

使用pivot_table创建多索引

df_p = df.pivot_table(index='panelist_id', columns='type', aggfunc=sum)

            refer_non_n_count           refer_se_count            \
type                       HP   PB   TN             HP   PB   TN   
panelist_id                                                        
1                         1.0  0.0  0.0            1.0  1.0  3.0   
2                         0.0  0.0  NaN            0.0  1.0  NaN   

            refer_sm_count           type_count            
type                    HP   PB   TN         HP   PB   TN  
panelist_id                                                
1                      2.0  0.0  0.0        2.0  1.0  3.0  
2                      1.0  1.0  NaN        1.0  2.0  NaN 

如果您确实想要展平列,那么

df_p.columns = ['_'.join(col) for col in df_p.columns.values]

尝试通过 pivot_table()rename_axis() 方法:

out=(df.pivot_table(index='panelist_id',columns='type',fill_value=0)
      .rename_axis(columns=[None,None],index=None))

最后使用map()方法和.columns属性:

out.columns=out.columns.map('_'.join)

现在如果你打印 out 你会得到你想要的输出

一个pivot_wider option via pyjanitor:

new_df = df.pivot_wider(index='panelist_id',
                        names_from='type',
                        names_from_position='last',
                        fill_value=0)

new_df:

panelist_id  type_count_HP  type_count_PB  type_count_TN  refer_sm_count_HP  refer_sm_count_PB  refer_sm_count_TN  refer_se_count_HP  refer_se_count_PB  refer_se_count_TN  refer_non_n_count_HP  refer_non_n_count_PB  refer_non_n_count_TN
          1              2              1              3                  2                  0                  0                  1                  1                  3                     1                     0                     0
          2              1              2              0                  1                  1                  0                  0                  1                  0                     0                     0                     0

完整的工作示例:

import janitor
import pandas as pd

df = pd.DataFrame({
    'panelist_id': [1, 1, 1, 2, 2],
    'type': ['HP', 'PB', 'TN', 'HP', 'PB'],
    'type_count': [2, 1, 3, 1, 2],
    'refer_sm_count': [2, 0, 0, 1, 1],
    'refer_se_count': [1, 1, 3, 0, 1],
    'refer_non_n_count': [1, 0, 0, 0, 0]
})

new_df = df.pivot_wider(index='panelist_id',
                        names_from='type',
                        names_from_position='last',
                        fill_value=0)

print(new_df.to_string(index=False))

首先,导入库:

import numpy as np
import pandas as pd

然后,读取您的数据:

data = pd.read_excel('base.xlsx')

使用 pivot_table 重塑您的数据:

data_reshaped = pd.pivot_table(data, values=['type_count', 'refer_sm_count', 'refer_se_count', 'refer_non_n_count'],
                               index=['panelist_id'], columns=['type'], aggfunc=np.sum)

但是,你的索引不会好。所以,然后重置:

columns = [data_reshaped.columns[i][0] + '_' + data_reshaped.columns[i][1]
           for i in range(len(data_reshaped.columns))] # to create new columns names

data_reshaped.columns = columns # to assign new columns names to dataframe
data_reshaped.reset_index(inplace=True) # to reset index
data_reshaped.fillna(0, inplace=True) # to substitute nan to 0

那么,你的数据就好了

再添加一个选项:

df = df.set_index(['panelist_id', 'type']).unstack(-1, ,fill_value=0)
df.columns = df.columns.map('_'.join)