Pandas dataframe 将行值重塑为新列(矩阵类型格式)
Pandas dataframe reshape row values into new columns (matrix type format)
我是 pandas 的新手,正在寻找有关如何重塑数据框的建议:
目前,我有这样一个数据框。
panelist_id
type
type_count
refer_sm_count
refer_se_count
refer_non_n_count
1
HP
2
2
1
1
1
PB
1
0
1
0
1
TN
3
0
3
0
2
HP
1
1
0
0
2
PB
2
1
1
0
0
理想情况下,我希望我的数据框看起来像这样:
panelist_id
type_HP_count
type_PB_count
type_TN_count
refer_sm_count_HP
refer_se_count_HP
refer_non_n_count_HP
refer_sm_count_PB
refer_se_count_PB
refer_non_n_count_PB
refer_sm_count_TN
refer_se_count_TN
refer_non_n_count_TN
1
2
1
3
2
1
0
0
1
0
0
0
0
2
1
2
0
1
0
0
1
1
0
0
0
0
基本上,我需要将 'type' 列中的不同行值转换为新列,显示每种类型的计数。标题为 'refer' 的原始 df 的接下来三列需要说明每个不同的 'type'。例如,refers_sm_count_[来自类型 X(例如,HP)]。任何帮助将非常感激。谢谢
使用pivot_table创建多索引
df_p = df.pivot_table(index='panelist_id', columns='type', aggfunc=sum)
refer_non_n_count refer_se_count \
type HP PB TN HP PB TN
panelist_id
1 1.0 0.0 0.0 1.0 1.0 3.0
2 0.0 0.0 NaN 0.0 1.0 NaN
refer_sm_count type_count
type HP PB TN HP PB TN
panelist_id
1 2.0 0.0 0.0 2.0 1.0 3.0
2 1.0 1.0 NaN 1.0 2.0 NaN
如果您确实想要展平列,那么
df_p.columns = ['_'.join(col) for col in df_p.columns.values]
尝试通过 pivot_table()
和 rename_axis()
方法:
out=(df.pivot_table(index='panelist_id',columns='type',fill_value=0)
.rename_axis(columns=[None,None],index=None))
最后使用map()
方法和.columns
属性:
out.columns=out.columns.map('_'.join)
现在如果你打印 out
你会得到你想要的输出
一个pivot_wider
option via pyjanitor:
new_df = df.pivot_wider(index='panelist_id',
names_from='type',
names_from_position='last',
fill_value=0)
new_df
:
panelist_id type_count_HP type_count_PB type_count_TN refer_sm_count_HP refer_sm_count_PB refer_sm_count_TN refer_se_count_HP refer_se_count_PB refer_se_count_TN refer_non_n_count_HP refer_non_n_count_PB refer_non_n_count_TN
1 2 1 3 2 0 0 1 1 3 1 0 0
2 1 2 0 1 1 0 0 1 0 0 0 0
完整的工作示例:
import janitor
import pandas as pd
df = pd.DataFrame({
'panelist_id': [1, 1, 1, 2, 2],
'type': ['HP', 'PB', 'TN', 'HP', 'PB'],
'type_count': [2, 1, 3, 1, 2],
'refer_sm_count': [2, 0, 0, 1, 1],
'refer_se_count': [1, 1, 3, 0, 1],
'refer_non_n_count': [1, 0, 0, 0, 0]
})
new_df = df.pivot_wider(index='panelist_id',
names_from='type',
names_from_position='last',
fill_value=0)
print(new_df.to_string(index=False))
首先,导入库:
import numpy as np
import pandas as pd
然后,读取您的数据:
data = pd.read_excel('base.xlsx')
使用 pivot_table 重塑您的数据:
data_reshaped = pd.pivot_table(data, values=['type_count', 'refer_sm_count', 'refer_se_count', 'refer_non_n_count'],
index=['panelist_id'], columns=['type'], aggfunc=np.sum)
但是,你的索引不会好。所以,然后重置:
columns = [data_reshaped.columns[i][0] + '_' + data_reshaped.columns[i][1]
for i in range(len(data_reshaped.columns))] # to create new columns names
data_reshaped.columns = columns # to assign new columns names to dataframe
data_reshaped.reset_index(inplace=True) # to reset index
data_reshaped.fillna(0, inplace=True) # to substitute nan to 0
那么,你的数据就好了
再添加一个选项:
df = df.set_index(['panelist_id', 'type']).unstack(-1, ,fill_value=0)
df.columns = df.columns.map('_'.join)
我是 pandas 的新手,正在寻找有关如何重塑数据框的建议:
目前,我有这样一个数据框。
panelist_id | type | type_count | refer_sm_count | refer_se_count | refer_non_n_count | |
---|---|---|---|---|---|---|
1 | HP | 2 | 2 | 1 | 1 | |
1 | PB | 1 | 0 | 1 | 0 | |
1 | TN | 3 | 0 | 3 | 0 | |
2 | HP | 1 | 1 | 0 | 0 | |
2 | PB | 2 | 1 | 1 | 0 | 0 |
理想情况下,我希望我的数据框看起来像这样:
panelist_id | type_HP_count | type_PB_count | type_TN_count | refer_sm_count_HP | refer_se_count_HP | refer_non_n_count_HP | refer_sm_count_PB | refer_se_count_PB | refer_non_n_count_PB | refer_sm_count_TN | refer_se_count_TN | refer_non_n_count_TN |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 3 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
2 | 1 | 2 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
基本上,我需要将 'type' 列中的不同行值转换为新列,显示每种类型的计数。标题为 'refer' 的原始 df 的接下来三列需要说明每个不同的 'type'。例如,refers_sm_count_[来自类型 X(例如,HP)]。任何帮助将非常感激。谢谢
使用pivot_table创建多索引
df_p = df.pivot_table(index='panelist_id', columns='type', aggfunc=sum)
refer_non_n_count refer_se_count \
type HP PB TN HP PB TN
panelist_id
1 1.0 0.0 0.0 1.0 1.0 3.0
2 0.0 0.0 NaN 0.0 1.0 NaN
refer_sm_count type_count
type HP PB TN HP PB TN
panelist_id
1 2.0 0.0 0.0 2.0 1.0 3.0
2 1.0 1.0 NaN 1.0 2.0 NaN
如果您确实想要展平列,那么
df_p.columns = ['_'.join(col) for col in df_p.columns.values]
尝试通过 pivot_table()
和 rename_axis()
方法:
out=(df.pivot_table(index='panelist_id',columns='type',fill_value=0)
.rename_axis(columns=[None,None],index=None))
最后使用map()
方法和.columns
属性:
out.columns=out.columns.map('_'.join)
现在如果你打印 out
你会得到你想要的输出
一个pivot_wider
option via pyjanitor:
new_df = df.pivot_wider(index='panelist_id',
names_from='type',
names_from_position='last',
fill_value=0)
new_df
:
panelist_id type_count_HP type_count_PB type_count_TN refer_sm_count_HP refer_sm_count_PB refer_sm_count_TN refer_se_count_HP refer_se_count_PB refer_se_count_TN refer_non_n_count_HP refer_non_n_count_PB refer_non_n_count_TN
1 2 1 3 2 0 0 1 1 3 1 0 0
2 1 2 0 1 1 0 0 1 0 0 0 0
完整的工作示例:
import janitor
import pandas as pd
df = pd.DataFrame({
'panelist_id': [1, 1, 1, 2, 2],
'type': ['HP', 'PB', 'TN', 'HP', 'PB'],
'type_count': [2, 1, 3, 1, 2],
'refer_sm_count': [2, 0, 0, 1, 1],
'refer_se_count': [1, 1, 3, 0, 1],
'refer_non_n_count': [1, 0, 0, 0, 0]
})
new_df = df.pivot_wider(index='panelist_id',
names_from='type',
names_from_position='last',
fill_value=0)
print(new_df.to_string(index=False))
首先,导入库:
import numpy as np
import pandas as pd
然后,读取您的数据:
data = pd.read_excel('base.xlsx')
使用 pivot_table 重塑您的数据:
data_reshaped = pd.pivot_table(data, values=['type_count', 'refer_sm_count', 'refer_se_count', 'refer_non_n_count'],
index=['panelist_id'], columns=['type'], aggfunc=np.sum)
但是,你的索引不会好。所以,然后重置:
columns = [data_reshaped.columns[i][0] + '_' + data_reshaped.columns[i][1]
for i in range(len(data_reshaped.columns))] # to create new columns names
data_reshaped.columns = columns # to assign new columns names to dataframe
data_reshaped.reset_index(inplace=True) # to reset index
data_reshaped.fillna(0, inplace=True) # to substitute nan to 0
那么,你的数据就好了
再添加一个选项:
df = df.set_index(['panelist_id', 'type']).unstack(-1, ,fill_value=0)
df.columns = df.columns.map('_'.join)