python 在图中查找聚类成员
python find cluster membership in graph
在 python 中,我正在尝试解决他们之前在 R 中遇到的相同问题:
import pandas as pd, numpy as np
df = pd.DataFrame({"id1": [1,1,2,2,3,3,4,4,5,5,6,6,np.NaN,np.NaN],
"id2": ['a',np.NaN,'a','c','c','d','x',np.NaN,'y','z','x','z',np.NaN,np.NaN],
"id3": [1,1,1,1,1,1,2,2,2,2,2,2,np.NaN,np.NaN]})
我希望 python 计算列 id3
,即分配网络集群成员资格(最好忽略 NA)
在 R 中:
g <- graph_from_data_frame(df, FALSE)
cg <- clusters(g)$membership
df$id4 <- cg[df$id1]
df
我们可以生成一个无向 networkx
图,源和目标设置为 id1
和 id2
,然后 enumerate
在图中的连接组件上创建一个映射字典和 map
本字典在 id1
列
import networkx as nx
G = nx.from_pandas_edgelist(df.dropna(), 'id1', 'id2')
df['id3'] = df['id1'].map({c: i for i, cc in enumerate(
nx.connected_components(G), 1) for c in cc})
id1 id2 id3
0 1.0 a 1.0
1 1.0 NaN 1.0
2 2.0 a 1.0
3 2.0 c 1.0
4 3.0 c 1.0
5 3.0 d 1.0
6 4.0 x 2.0
7 4.0 NaN 2.0
8 5.0 y 2.0
9 5.0 z 2.0
10 6.0 x 2.0
11 6.0 z 2.0
12 NaN NaN NaN
13 NaN NaN NaN
在 python 中,我正在尝试解决他们之前在 R 中遇到的相同问题:
import pandas as pd, numpy as np
df = pd.DataFrame({"id1": [1,1,2,2,3,3,4,4,5,5,6,6,np.NaN,np.NaN],
"id2": ['a',np.NaN,'a','c','c','d','x',np.NaN,'y','z','x','z',np.NaN,np.NaN],
"id3": [1,1,1,1,1,1,2,2,2,2,2,2,np.NaN,np.NaN]})
我希望 python 计算列 id3
,即分配网络集群成员资格(最好忽略 NA)
在 R 中:
g <- graph_from_data_frame(df, FALSE)
cg <- clusters(g)$membership
df$id4 <- cg[df$id1]
df
我们可以生成一个无向 networkx
图,源和目标设置为 id1
和 id2
,然后 enumerate
在图中的连接组件上创建一个映射字典和 map
本字典在 id1
列
import networkx as nx
G = nx.from_pandas_edgelist(df.dropna(), 'id1', 'id2')
df['id3'] = df['id1'].map({c: i for i, cc in enumerate(
nx.connected_components(G), 1) for c in cc})
id1 id2 id3
0 1.0 a 1.0
1 1.0 NaN 1.0
2 2.0 a 1.0
3 2.0 c 1.0
4 3.0 c 1.0
5 3.0 d 1.0
6 4.0 x 2.0
7 4.0 NaN 2.0
8 5.0 y 2.0
9 5.0 z 2.0
10 6.0 x 2.0
11 6.0 z 2.0
12 NaN NaN NaN
13 NaN NaN NaN