Python GEKKO:求解模型时参数值发生变化

Python GEKKO: Value of parameter changes while solving the model

我在使用 GEKKO 时遇到以下问题:在求解模型时某些参数 (.Param) 正在改变(其他则没有),我无法确定原因。

背景:我目前正在尝试将代码从 EViews(参见 gennaro.zezza.it)转换为 python。我使用 GEKKO 来模拟一个由 11 个方程组成的系统(目前)。我确实想使用参数(而不是似乎工作得很好的常量),因为我需要('exogenously')随时间改变它们的值(因此需要一个数组)。

示例:在下面的示例中,'economic system' 对新的政府支出作出反应。在这里,我特别面临“m.alpha1”和“m.alpha2”的问题 - 如果将它们作为“.Param”引入,则在求解模型时它们的值将变为 1.0(而不是 0.6 和 0.4)。我怎样才能阻止 GEKKO 这样做? (同样,我希望能够在时间 x 之后将 alpha1 更改为 0.7。例如,下限和上限在这里无济于事。)

感谢您的帮助!!

代码:

from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
import plotly.graph_objects as go

# Initialize model
m = GEKKO(remote=False)
tstart = 1945
tend = 2000
tdur = tend-tstart+1
m.time = np.linspace(0, tend-tstart, tdur)

# Model parameters
m.t = m.Param(value=m.time)

# Exogenous parameters
alpha1_ex = 0.6
alpha2_ex = 0.4
theta_ex = 0.2
w_ex = 1

# -as .Const
m.alpha1 = m.Const(value=alpha1_ex, name='Propensity to consume out of income')
m.alpha2 = m.Const(value=alpha2_ex, name='Propensity to consume out of wealth')
#m.theta = m.Const(value=theta_ex, name='Tax rate')
#m.w = m.Const(value=w_ex, name='Wage rate')

# -as .Param: issues with alpha1 & alpha2
#m.alpha1 = m.Param(value=np.full(tdur,alpha1_ex), name='Propensity to consume out of income')
#m.alpha2 = m.Param(value=np.full(tdur,alpha2_ex), name='Propensity to consume out of wealth')
m.theta = m.Param(value=np.full(tdur,theta_ex), name='Tax rate')
m.w = m.Param(value=np.ones(tdur), name='Wage rate')

# no issues with g_d
m.g_d = m.Param(value=np.zeros(tdur), name='Government goods, demand')
m.g_d[1:] = 20

# Endogenous variables
m.c_d = m.Var(value=0, name='Consumption goods demand by households')
m.c_s = m.Var(value=0, name='Consumption goods supply')
m.g_s = m.Var(value=0, name='Government goods, supply')
m.h_h = m.Var(value=0, name='Cash money held by households')
m.h_s = m.Var(value=0, name='Cash money supplied by government')
m.n_d = m.Var(value=0, name='Demand for labor')
m.n_s = m.Var(value=0, name='Supply for labor')
m.t_d = m.Var(value=0, name='Taxes, "demand"')
m.t_s = m.Var(value=0, name='Taxes, "supply"')
m.y = m.Var(value=0, name='Income (=GDP)')
m.yd = m.Var(value=0, name='Disposable income of households')

# Lag variables
m.h_h_lag = m.Var(value=0, name='Cash money held by households (t-1)')
m.delay(m.h_h,m.h_h_lag,1) # m.h_h_lag = m.h_h(t-1)
m.h_s_lag = m.Var(value=0, name='Cash money supplied by government (t-1)')
m.delay(m.h_s,m.h_s_lag,1)

# Equations
m.Equation(m.c_s == m.c_d)
m.Equation(m.g_s == m.g_d)
m.Equation(m.t_s == m.t_d)
m.Equation(m.n_s == m.n_d)
m.Equation(m.yd == m.w*m.n_s - m.t_s)
m.Equation(m.t_d == m.theta*m.w*m.n_s)
m.Equation(m.c_d == m.alpha1*m.yd + m.alpha2*m.h_h_lag)
m.Equation(m.h_s == m.h_s_lag + m.g_d - m.t_d)
m.Equation(m.h_h == m.h_h_lag + m.yd - m.c_d)
m.Equation(m.y == m.c_s + m.g_s)
m.Equation(m.n_d == m.y/m.w)

# Solve
m.options.IMODE = 4
m.solve(disp=False)

print("Alpha1 = ", m.alpha1.value)
print("Alpha2 = ", m.alpha2.value)
print("Theta = ", m.theta.value)
print("w = ", m.w.value)

# Plot results
fig, axes = plt.subplots(2, 2, sharex=True, figsize=(8, 7))
fig.canvas.manager.set_window_title('Figures Chapter 3')
fig.suptitle('SIM Model - basic')
x_major_ticks = np.arange(0,tdur,5)

axes[0,0].plot(m.time, m.g_d.value, '-', color='black', linewidth=1)
axes[0,0].legend([m.g_d.name],loc=4,fontsize=7)
axes[0,0].grid()
axes[0,0].set_xticks(x_major_ticks)

axes[1,0].plot(m.time, m.y.value, '-', color='red', linewidth=1)
axes[1,0].legend([m.y.name],loc=4,fontsize=7)
axes[1,0].grid()
axes[1,0].set_xlabel('Time (years)')
axes[1,0].set_xticks(x_major_ticks)

axes[0,1].plot(m.time, m.c_d.value, '-', color='blue', linewidth=0.75)
axes[0,1].plot(m.time, m.yd.value, '-', color='green', linewidth=0.75)
axes[0,1].legend([m.c_d.name,m.yd.name],loc=4,fontsize=7)
axes[0,1].grid()
axes[0,1].set_xticks(x_major_ticks)

ln1 = axes[1,1].plot(m.time, m.h_h.value, '-', color='purple', linewidth=0.75)
axes[1,1].tick_params(axis='y', labelcolor='purple')
ax2 = axes[1,1].twinx()
ln2 = ax2.plot(m.time, [a_i - b_i for a_i, b_i in zip(m.h_h, m.h_h_lag)], '-', color='orange', linewidth=0.75)
ax2.tick_params(axis='y', labelcolor='orange')
lns = ln1+ln2
axes[1,1].legend(lns,[m.h_h.name,'Household savings'],loc=4,fontsize=7)
axes[1,1].grid()
axes[1,1].set_xticks(x_major_ticks)
axes[1,1].set_xlabel('Time (years)')

plt.show()

输出 #1:m.alpha1 和 m.alpha2 作为 .const

Alpha1 =  0.6
Alpha2 =  0.4
Theta =  [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2]
w =  [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

输出 #2:m.alpha1 作为 .param

Alpha1 =  [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
Alpha2 =  0.4
Theta =  [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2]
w =  [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

问题是变量名 name='Propensity to consume out of income' 超过了 25 个字符。

m.alpha1 = m.Param(value=np.full(tdur,alpha1_ex), name='Propensity to consume out of income')
m.alpha2 = m.Param(value=np.full(tdur,alpha2_ex), name='Propensity to consume out of wealth')

模型文件生成正确 (gk_model0.apm) 但数据文件 (gk_model0.csv) header 被截断为 25 个字符。可以使用 m.open_folder() 访问这些文件。错误出在 gk_write_files.py 这一行,其中数字输出为长度为 25 的字符串。

np.savetxt(os.path.join(self._path,file_name), csv_data.T, delimiter=",", fmt='%1.25s')

我已将其添加为 bug report with tracking on GitHub。一个 work-around 是使用较短的变量名或省略变量名。

m.alpha1 = m.Param(value=np.full(tdur,alpha1_ex)) # Propensity to consume out of income