对一个字段内的特定值进行弹性聚合
Elastic aggregation on specific values from within one field
我正在将我的数据库从 postgres 迁移到 elasticsearch。我的 postgres 查询如下所示:
select site_id, count(*) from r_2332 where site_id in ('1300','1364') and date >= '2021-01-25' and date <= '2021-01-30'
预期结果如下:
site_id count
1300 1234
1364 2345
我正在尝试从 elasticsearch aggs 中得出相同的结果。我尝试了以下方法:
GET /r_2332/_search
{
"query": {
"bool" : {
"should" : [
{"match" : {"site_id": "1300"}},
{"match" : {"site_id": "1364"}}
],"minimum_should_match": 1
}
},
"aggs" : {
"footfall" : {
"range" : {
"field" : "date",
"ranges" : [
{
"from":"2021-01-21",
"to":"2021-01-30"
}
]
}
}
}
}
这给了我如下结果:
"aggregations":{"footfall":{"buckets":[{"key":"2021-01-21T00:00:00.000Z-2021-01-30T00:00:00.000Z","from":1.6111872E12,"from_as_string":"2021-01-21T00:00:00.000Z","to":1.6119648E12,"to_as_string":"2021-01-30T00:00:00.000Z","doc_count":2679}]}
还有这个:
GET /r_2332/_search
{
"query": {
"terms": {
"site_id": [ "1300", "1364" ],
"boost": 1.0
}
},
"aggs" : {
"footfall" : {
"range" : {
"field" : "date",
"ranges" : [
{
"from":"2021-01-21",
"to":"2021-01-30"
}
]
}
}
}
}
这提供了相同的结果:
"aggregations":{"footfall":{"buckets":[{"key":"2021-01-21T00:00:00.000Z-2021-01-30T00:00:00.000Z","from":1.6111872E12,"from_as_string":"2021-01-21T00:00:00.000Z","to":1.6119648E12,"to_as_string":"2021-01-30T00:00:00.000Z","doc_count":2679}]}
如何分别获得每个 site_id 的结果?
您可以使用 terms and range aggregation 的组合来完成您的任务
添加带有索引数据、搜索查询和搜索结果的工作示例
索引数据:
{
"site_id":1365,
"date":"2021-01-24"
}
{
"site_id":1300,
"date":"2021-01-22"
}
{
"site_id":1300,
"date":"2020-01-22"
}
{
"site_id":1364,
"date":"2021-01-24"
}
搜索查询:
{
"size": 0,
"aggs": {
"siteId": {
"terms": {
"field": "site_id",
"include": [
1300,
1364
]
},
"aggs": {
"footfall": {
"range": {
"field": "date",
"ranges": [
{
"from": "2021-01-21",
"to": "2021-01-30"
}
]
}
}
}
}
}
}
搜索结果:
"aggregations": {
"siteId": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 1300,
"doc_count": 2,
"footfall": {
"buckets": [
{
"key": "2021-01-21T00:00:00.000Z-2021-01-30T00:00:00.000Z",
"from": 1.6111872E12,
"from_as_string": "2021-01-21T00:00:00.000Z",
"to": 1.6119648E12,
"to_as_string": "2021-01-30T00:00:00.000Z",
"doc_count": 1 // note this
}
]
}
},
{
"key": 1364,
"doc_count": 1,
"footfall": {
"buckets": [
{
"key": "2021-01-21T00:00:00.000Z-2021-01-30T00:00:00.000Z",
"from": 1.6111872E12,
"from_as_string": "2021-01-21T00:00:00.000Z",
"to": 1.6119648E12,
"to_as_string": "2021-01-30T00:00:00.000Z",
"doc_count": 1 // note this
}
]
}
}
]
}
}
这可能会表现更好
{
"size": 0,
"query": {
"bool": {
"filter": [
{
"terms": {
"site_id": [
"1300",
"1365"
]
}
},
{
"range": {
"date": {
"gte": "2021-01-21",
"lte": "2021-01-24"
}
}
}
]
}
},
"aggs": {
"group_by": {
"terms": {
"field": "site_id"
}
}
}
}
我正在将我的数据库从 postgres 迁移到 elasticsearch。我的 postgres 查询如下所示:
select site_id, count(*) from r_2332 where site_id in ('1300','1364') and date >= '2021-01-25' and date <= '2021-01-30'
预期结果如下:
site_id count
1300 1234
1364 2345
我正在尝试从 elasticsearch aggs 中得出相同的结果。我尝试了以下方法:
GET /r_2332/_search
{
"query": {
"bool" : {
"should" : [
{"match" : {"site_id": "1300"}},
{"match" : {"site_id": "1364"}}
],"minimum_should_match": 1
}
},
"aggs" : {
"footfall" : {
"range" : {
"field" : "date",
"ranges" : [
{
"from":"2021-01-21",
"to":"2021-01-30"
}
]
}
}
}
}
这给了我如下结果:
"aggregations":{"footfall":{"buckets":[{"key":"2021-01-21T00:00:00.000Z-2021-01-30T00:00:00.000Z","from":1.6111872E12,"from_as_string":"2021-01-21T00:00:00.000Z","to":1.6119648E12,"to_as_string":"2021-01-30T00:00:00.000Z","doc_count":2679}]}
还有这个:
GET /r_2332/_search
{
"query": {
"terms": {
"site_id": [ "1300", "1364" ],
"boost": 1.0
}
},
"aggs" : {
"footfall" : {
"range" : {
"field" : "date",
"ranges" : [
{
"from":"2021-01-21",
"to":"2021-01-30"
}
]
}
}
}
}
这提供了相同的结果:
"aggregations":{"footfall":{"buckets":[{"key":"2021-01-21T00:00:00.000Z-2021-01-30T00:00:00.000Z","from":1.6111872E12,"from_as_string":"2021-01-21T00:00:00.000Z","to":1.6119648E12,"to_as_string":"2021-01-30T00:00:00.000Z","doc_count":2679}]}
如何分别获得每个 site_id 的结果?
您可以使用 terms and range aggregation 的组合来完成您的任务
添加带有索引数据、搜索查询和搜索结果的工作示例
索引数据:
{
"site_id":1365,
"date":"2021-01-24"
}
{
"site_id":1300,
"date":"2021-01-22"
}
{
"site_id":1300,
"date":"2020-01-22"
}
{
"site_id":1364,
"date":"2021-01-24"
}
搜索查询:
{
"size": 0,
"aggs": {
"siteId": {
"terms": {
"field": "site_id",
"include": [
1300,
1364
]
},
"aggs": {
"footfall": {
"range": {
"field": "date",
"ranges": [
{
"from": "2021-01-21",
"to": "2021-01-30"
}
]
}
}
}
}
}
}
搜索结果:
"aggregations": {
"siteId": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 1300,
"doc_count": 2,
"footfall": {
"buckets": [
{
"key": "2021-01-21T00:00:00.000Z-2021-01-30T00:00:00.000Z",
"from": 1.6111872E12,
"from_as_string": "2021-01-21T00:00:00.000Z",
"to": 1.6119648E12,
"to_as_string": "2021-01-30T00:00:00.000Z",
"doc_count": 1 // note this
}
]
}
},
{
"key": 1364,
"doc_count": 1,
"footfall": {
"buckets": [
{
"key": "2021-01-21T00:00:00.000Z-2021-01-30T00:00:00.000Z",
"from": 1.6111872E12,
"from_as_string": "2021-01-21T00:00:00.000Z",
"to": 1.6119648E12,
"to_as_string": "2021-01-30T00:00:00.000Z",
"doc_count": 1 // note this
}
]
}
}
]
}
}
这可能会表现更好
{
"size": 0,
"query": {
"bool": {
"filter": [
{
"terms": {
"site_id": [
"1300",
"1365"
]
}
},
{
"range": {
"date": {
"gte": "2021-01-21",
"lte": "2021-01-24"
}
}
}
]
}
},
"aggs": {
"group_by": {
"terms": {
"field": "site_id"
}
}
}
}