与原始 Transformer 模型相比,为什么 Torchscript 会追踪 return 不同的外观 encoded_inputs?
Why would a Torchscript trace return different looking encoded_inputs compared to the original Transformer model?
背景
我正在使用经过微调的 Mbart50 model that I need sped up for inferencing because using the HuggingFace model as-is is fairly slow with my current hardware. I wanted to use TorchScript because I couldn't get onnx 来导出这个特定的模型,因为它似乎会在以后得到支持(否则我很乐意出错)。
将 Transformer 转换为 Pytorch 跟踪:
import torch
""" Model data """
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-one-to-many-mmt", torchscript= True)
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
tokenizer.src_lang = 'en_XX'
dummy = "To celebrate World Oceans Day, we're swimming through a shoal of jack fish just off the coast of Baja, California, in Cabo Pulmo National Park. This Mexican marine park in the Sea of Cortez is home to the northernmost and oldest coral reef on the west coast of North America, estimated to be about 20,000 years old. Jacks are clearly plentiful here, but divers and snorkelers in Cabo Pulmo can also come across many other species of fish and marine mammals, including several varieties of sharks, whales, dolphins, tortoises, and manta rays."
model.config.forced_bos_token_id=250006
myTokenBatch = tokenizer(dummy, max_length=192, padding='max_length', truncation = True, return_tensors="pt")
torch.jit.save(torch.jit.trace(model, [myTokenBatch.input_ids,myTokenBatch.attention_mask]), "././traced-model/mbart-many.pt")
推理步骤:
import torch
""" Model data """
from transformers import MBart50TokenizerFast
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
model = torch.jit.load('././traced-model/mbart-many.pt')
MAX_LENGTH = 192
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
model.to(device)
model.eval()
tokenizer.src_lang = 'en_XX'
dummy = "To celebrate World Oceans Day, we're swimming through a shoal of jack fish just off the coast of Baja, California, in Cabo Pulmo National Park. This Mexican marine park in the Sea of Cortez is home to the northernmost and oldest coral reef on the west coast of North America, estimated to be about 20,000 years old. Jacks are clearly plentiful here, but divers and snorkelers in Cabo Pulmo can also come across many other species of fish and marine mammals, including several varieties of sharks, whales, dolphins, tortoises, and manta rays."
myTokenBatch = tokenizer(dummy, max_length=192, padding='max_length', truncation = True, return_tensors="pt")
encode, pool , norm = model(myTokenBatch.input_ids,myTokenBatch.attention_mask)
预期编码输出:
这些是可以使用 MBart50TokenizerFast 解码为单词的标记。
tensor([[250004, 717, 176016, 6661, 55609, 7, 10013, 4, 642,
25, 107, 192298, 8305, 10, 15756, 289, 111, 121477,
67155, 1660, 5773, 70, 184085, 111, 118191, 4, 39897,
4, 23, 143740, 21694, 432, 9907, 5227, 5, 3293,
181815, 122084, 9201, 23, 70, 27414, 111, 48892, 169,
83, 5368, 47, 70, 144477, 9022, 840, 18, 136,
10332, 525, 184518, 456, 4240, 98, 70, 65272, 184085,
111, 23924, 21629, 4, 25902, 3674, 47, 186, 1672,
6, 91578, 5369, 10332, 5, 21763, 7, 621, 123019,
32328, 118, 7844, 3688, 4, 1284, 41767, 136, 120379,
2590, 1314, 23, 143740, 21694, 432, 831, 2843, 1380,
36880, 5941, 3789, 114149, 111, 67155, 136, 122084, 21968,
8080, 4, 26719, 40368, 285, 68794, 111, 54524, 1224,
4, 148, 50742, 7, 4, 13111, 19379, 1779, 4,
43807, 125216, 7, 4, 136, 332, 102, 62656, 7,
5, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1]])
实际输出:
我不知道这是什么...print(encode)
(tensor([[[[-9.3383e-02, -2.0395e-01, 4.8226e-03, ..., 1.8068e+00,
1.1528e-01, 7.0406e-02],
[-4.4630e-02, -2.2453e-01, 9.5264e-02, ..., 1.6921e+00,
1.4607e-01, 4.8238e-02],
[-7.8206e-01, 1.2699e-01, 1.6467e+00, ..., -1.7057e+00,
8.7768e-01, 8.2230e-01],
...,
[-1.2145e-02, -2.1855e-03, -6.0966e-03, ..., 2.9296e-02,
2.2141e-03, 3.2074e-02],
[-1.4671e-02, -2.8995e-03, -5.8610e-03, ..., 2.8525e-02,
2.4620e-03, 3.1593e-02],
[-1.5877e-02, -3.5165e-03, -4.8743e-03, ..., 2.8930e-02,
2.9877e-03, 3.3892e-02]]]], grad_fn=<CopyBackwards>))
在这里找到答案:
You can't directly convert a seq2seq model (encoder-decoder model) using this method. To convert a seq2seq model (encoder-decoder) you have to split them and convert them separately, an encoder to onnx and a decoder to onnx. you can follow this guide (it was done for T5 which is also a seq2seq model). you need to provide a dummy variable to both encoder and to the decoder separately. by default when converting using this method it provides the encoder the dummy variable.
背景
我正在使用经过微调的 Mbart50 model that I need sped up for inferencing because using the HuggingFace model as-is is fairly slow with my current hardware. I wanted to use TorchScript because I couldn't get onnx 来导出这个特定的模型,因为它似乎会在以后得到支持(否则我很乐意出错)。
将 Transformer 转换为 Pytorch 跟踪:
import torch
""" Model data """
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-one-to-many-mmt", torchscript= True)
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
tokenizer.src_lang = 'en_XX'
dummy = "To celebrate World Oceans Day, we're swimming through a shoal of jack fish just off the coast of Baja, California, in Cabo Pulmo National Park. This Mexican marine park in the Sea of Cortez is home to the northernmost and oldest coral reef on the west coast of North America, estimated to be about 20,000 years old. Jacks are clearly plentiful here, but divers and snorkelers in Cabo Pulmo can also come across many other species of fish and marine mammals, including several varieties of sharks, whales, dolphins, tortoises, and manta rays."
model.config.forced_bos_token_id=250006
myTokenBatch = tokenizer(dummy, max_length=192, padding='max_length', truncation = True, return_tensors="pt")
torch.jit.save(torch.jit.trace(model, [myTokenBatch.input_ids,myTokenBatch.attention_mask]), "././traced-model/mbart-many.pt")
推理步骤:
import torch
""" Model data """
from transformers import MBart50TokenizerFast
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
model = torch.jit.load('././traced-model/mbart-many.pt')
MAX_LENGTH = 192
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
model.to(device)
model.eval()
tokenizer.src_lang = 'en_XX'
dummy = "To celebrate World Oceans Day, we're swimming through a shoal of jack fish just off the coast of Baja, California, in Cabo Pulmo National Park. This Mexican marine park in the Sea of Cortez is home to the northernmost and oldest coral reef on the west coast of North America, estimated to be about 20,000 years old. Jacks are clearly plentiful here, but divers and snorkelers in Cabo Pulmo can also come across many other species of fish and marine mammals, including several varieties of sharks, whales, dolphins, tortoises, and manta rays."
myTokenBatch = tokenizer(dummy, max_length=192, padding='max_length', truncation = True, return_tensors="pt")
encode, pool , norm = model(myTokenBatch.input_ids,myTokenBatch.attention_mask)
预期编码输出:
这些是可以使用 MBart50TokenizerFast 解码为单词的标记。
tensor([[250004, 717, 176016, 6661, 55609, 7, 10013, 4, 642,
25, 107, 192298, 8305, 10, 15756, 289, 111, 121477,
67155, 1660, 5773, 70, 184085, 111, 118191, 4, 39897,
4, 23, 143740, 21694, 432, 9907, 5227, 5, 3293,
181815, 122084, 9201, 23, 70, 27414, 111, 48892, 169,
83, 5368, 47, 70, 144477, 9022, 840, 18, 136,
10332, 525, 184518, 456, 4240, 98, 70, 65272, 184085,
111, 23924, 21629, 4, 25902, 3674, 47, 186, 1672,
6, 91578, 5369, 10332, 5, 21763, 7, 621, 123019,
32328, 118, 7844, 3688, 4, 1284, 41767, 136, 120379,
2590, 1314, 23, 143740, 21694, 432, 831, 2843, 1380,
36880, 5941, 3789, 114149, 111, 67155, 136, 122084, 21968,
8080, 4, 26719, 40368, 285, 68794, 111, 54524, 1224,
4, 148, 50742, 7, 4, 13111, 19379, 1779, 4,
43807, 125216, 7, 4, 136, 332, 102, 62656, 7,
5, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1]])
实际输出:
我不知道这是什么...print(encode)
(tensor([[[[-9.3383e-02, -2.0395e-01, 4.8226e-03, ..., 1.8068e+00,
1.1528e-01, 7.0406e-02],
[-4.4630e-02, -2.2453e-01, 9.5264e-02, ..., 1.6921e+00,
1.4607e-01, 4.8238e-02],
[-7.8206e-01, 1.2699e-01, 1.6467e+00, ..., -1.7057e+00,
8.7768e-01, 8.2230e-01],
...,
[-1.2145e-02, -2.1855e-03, -6.0966e-03, ..., 2.9296e-02,
2.2141e-03, 3.2074e-02],
[-1.4671e-02, -2.8995e-03, -5.8610e-03, ..., 2.8525e-02,
2.4620e-03, 3.1593e-02],
[-1.5877e-02, -3.5165e-03, -4.8743e-03, ..., 2.8930e-02,
2.9877e-03, 3.3892e-02]]]], grad_fn=<CopyBackwards>))
在这里找到答案:
You can't directly convert a seq2seq model (encoder-decoder model) using this method. To convert a seq2seq model (encoder-decoder) you have to split them and convert them separately, an encoder to onnx and a decoder to onnx. you can follow this guide (it was done for T5 which is also a seq2seq model). you need to provide a dummy variable to both encoder and to the decoder separately. by default when converting using this method it provides the encoder the dummy variable.