Multioutput custom keras ResNet50 model; ValueError: Graph disconnected
Multioutput custom keras ResNet50 model; ValueError: Graph disconnected
在我的代码中出现了这个错误。我该如何解决?
ValueError: Graph disconnected: cannot obtain value for tensor KerasTensor(type_spec=TensorSpec(shape=(None, None, None, 3), dtype=tf.float32, name='input_2'), name='input_2', description="created by layer 'input_2'") at layer "conv1_pad". The following previous layers were accessed without issue: []
我的模特是
def multiple_outputs(generator):
for batch_x,batch_y in generator:
yield (batch_x, np.hsplit(batch_y,[26,28])) #here splitting input data into 6 groups
image_input = Input(shape=(input_size))
base_model =ResNet50(weights='imagenet',include_top=False)
m = base_model.output
x = GlobalAveragePooling2D(name='avg_pool')(m)
x = Dropout(0.2)(x)
type_out = Dense(26, activation='sigmoid', name='type_output')(x)
top_out = Dense(3, activation='softmax', name='top_output')(x)
model = Model(inputs=image_input,outputs= [type_out, top_out])
下面我提到了 model.fit
部分
history = model.fit(x=multiple_outputs(train_generator),
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=multiple_outputs(valid_generator),
validation_steps=STEP_SIZE_VALID,
callbacks=callbacks,
max_queue_size=10,
workers=1,
use_multiprocessing=False,
epochs=1)
请问有人可以帮我解决这个问题吗?
答案在于仔细检查您的模型架构和您遇到的错误的性质。
这里你的image_input没有连接到你模型的其余部分
image_input = Input(shape=(input_size))
在您的其余代码中,您可以看到每一层都连接到其他每一层,您可以从每一层遍历到输出
但是input_image没有连接到其中任何一个
base_model =ResNet50(weights='imagenet',include_top=False)
m = base_model.output
x = GlobalAveragePooling2D(name='avg_pool')(m)
x = Dropout(0.2)(x)
type_out = Dense(26, activation='sigmoid', name='type_output')(x)
top_out = Dense(3, activation='softmax', name='top_output')(x)
bottom_out = Dense(8, activation='softmax', name='bottom_output')(x)
headwear_out = Dense(3, activation='softmax', name='headwear_output')(x)
footwear_out = Dense(3, activation='softmax', name='footwear_output')(x)
sleeve_out = Dense(5, activation='softmax', name='sleeve_output')(x)
gender_out = Dense(3, activation='softmax', name='gender_output')(x)
但在您的模型中,您正试图采用 inputs=input_image
和 outputs=[type_out, top_out, bottom_out, headwear_out, footwear_out, sleeve_out, gender_out]
但是由于您的 input_image
根本没有连接,因此模型有一个断开连接的图表。
因此,尝试将您的 input_image
层与 base_model
层或以您想要的任何方式连接起来,图表将被连接起来。
答案是,这里我在模型初始化上做错了。
Input_tensor应该在模型初始化的时候加上。
base_model = ResNet50(weights='imagenet', include_top=False, input_tensor=image_input)
在我的代码中出现了这个错误。我该如何解决?
ValueError: Graph disconnected: cannot obtain value for tensor KerasTensor(type_spec=TensorSpec(shape=(None, None, None, 3), dtype=tf.float32, name='input_2'), name='input_2', description="created by layer 'input_2'") at layer "conv1_pad". The following previous layers were accessed without issue: []
我的模特是
def multiple_outputs(generator):
for batch_x,batch_y in generator:
yield (batch_x, np.hsplit(batch_y,[26,28])) #here splitting input data into 6 groups
image_input = Input(shape=(input_size))
base_model =ResNet50(weights='imagenet',include_top=False)
m = base_model.output
x = GlobalAveragePooling2D(name='avg_pool')(m)
x = Dropout(0.2)(x)
type_out = Dense(26, activation='sigmoid', name='type_output')(x)
top_out = Dense(3, activation='softmax', name='top_output')(x)
model = Model(inputs=image_input,outputs= [type_out, top_out])
下面我提到了 model.fit
部分
history = model.fit(x=multiple_outputs(train_generator),
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=multiple_outputs(valid_generator),
validation_steps=STEP_SIZE_VALID,
callbacks=callbacks,
max_queue_size=10,
workers=1,
use_multiprocessing=False,
epochs=1)
请问有人可以帮我解决这个问题吗?
答案在于仔细检查您的模型架构和您遇到的错误的性质。
这里你的image_input没有连接到你模型的其余部分
image_input = Input(shape=(input_size))
在您的其余代码中,您可以看到每一层都连接到其他每一层,您可以从每一层遍历到输出 但是input_image没有连接到其中任何一个
base_model =ResNet50(weights='imagenet',include_top=False)
m = base_model.output
x = GlobalAveragePooling2D(name='avg_pool')(m)
x = Dropout(0.2)(x)
type_out = Dense(26, activation='sigmoid', name='type_output')(x)
top_out = Dense(3, activation='softmax', name='top_output')(x)
bottom_out = Dense(8, activation='softmax', name='bottom_output')(x)
headwear_out = Dense(3, activation='softmax', name='headwear_output')(x)
footwear_out = Dense(3, activation='softmax', name='footwear_output')(x)
sleeve_out = Dense(5, activation='softmax', name='sleeve_output')(x)
gender_out = Dense(3, activation='softmax', name='gender_output')(x)
但在您的模型中,您正试图采用 inputs=input_image
和 outputs=[type_out, top_out, bottom_out, headwear_out, footwear_out, sleeve_out, gender_out]
但是由于您的 input_image
根本没有连接,因此模型有一个断开连接的图表。
因此,尝试将您的 input_image
层与 base_model
层或以您想要的任何方式连接起来,图表将被连接起来。
答案是,这里我在模型初始化上做错了。 Input_tensor应该在模型初始化的时候加上。
base_model = ResNet50(weights='imagenet', include_top=False, input_tensor=image_input)