如何从多个摄像头的帧中获取英特尔实感 D435i 摄像头序列号?

How to get intel realsense D435i camera serial numbers from frames for multiple cameras?

我已经为两个摄像头初始化了一个管道,我正在从同一个管道获取颜色和深度图像。

问题是我找不到对应帧的相机序列号来确定哪个相机拍摄了这些帧。

下面是我的代码:

import pyrealsense2 as rs
import numpy as np
import cv2
import logging
import time

# Configure depth and color streams...
pipeline_1 = rs.pipeline()
config_1 = rs.config()
config_1.enable_device('938422072752')
config_1.enable_device('902512070386')
config_1.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config_1.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)



# Start streaming from both cameras
pipeline_1.start(config_1)

try:
    while True:

        # Camera 1
        # Wait for a coherent pair of frames: depth and color
        frames_1 = pipeline_1.wait_for_frames()
        depth_frame_1 = frames_1.get_depth_frame()
        color_frame_1 = frames_1.get_color_frame()
        if not depth_frame_1 or not color_frame_1:
            continue
        # Convert images to numpy arrays
        depth_image_1 = np.asanyarray(depth_frame_1.get_data())
        color_image_1 = np.asanyarray(color_frame_1.get_data())
        # Apply colormap on depth image (image must be converted to 8-bit per pixel first)
        depth_colormap_1 = cv2.applyColorMap(cv2.convertScaleAbs(depth_image_1, alpha=0.5), cv2.COLORMAP_JET)

        # Camera 2
        # Wait for a coherent pair of frames: depth and color
        frames_2 = pipeline_1.wait_for_frames()
        depth_frame_2 = frames_2.get_depth_frame()
        color_frame_2 = frames_2.get_color_frame()
    
        if not depth_frame_2 or not color_frame_2:
            continue
        # Convert images to numpy arrays

        depth_image_2 = np.asanyarray(depth_frame_2.get_data())
        color_image_2 = np.asanyarray(color_frame_2.get_data())
        # Apply colormap on depth image (image must be converted to 8-bit per pixel first)
        depth_colormap_2 = cv2.applyColorMap(cv2.convertScaleAbs(depth_image_2, alpha=0.5), cv2.COLORMAP_JET)

        # Stack all images horizontally
        images = np.hstack((color_image_1, depth_colormap_1,color_image_2, depth_colormap_2))

        # Show images from both cameras
        cv2.namedWindow('RealSense', cv2.WINDOW_NORMAL)
        cv2.imshow('RealSense', images)
        
        cv2.waitKey(20)

       
finally:
    pipeline_1.stop()

如何在 wait_for_frames() 之后找到相机序列号以确定哪个相机拍摄了深度和彩色图像。

这将查找连接的设备并找到序列号。

它们保存在一个列表中,您可以使用它们来启动可用的相机。

# Configure depth and color streams...
realsense_ctx = rs.context()
connected_devices = []
for i in range(len(realsense_ctx.devices)):
    detected_camera = ealsense_ctx.devices[i].get_info(rs.camera_info.serial_number)
    connected_devices.append(detected_camera)

我采用了你的代码,将它与nayab 发布的C++ example 结合,组成以下代码,抓取多个RealSense 摄像头的彩色图像(仅)并将它们水平堆叠:

import pyrealsense2 as rs
import numpy as np
import cv2
import logging
import time

realsense_ctx = rs.context()  # The context encapsulates all of the devices and sensors, and provides some additional functionalities.
connected_devices = []

# get serial numbers of connected devices:
for i in range(len(realsense_ctx.devices)):
    detected_camera = realsense_ctx.devices[i].get_info(
        rs.camera_info.serial_number)
    connected_devices.append(detected_camera)

pipelines = []
configs = []
for i in range(len(realsense_ctx.devices)):
    pipelines.append(rs.pipeline())  # one pipeline for each device
    configs.append(rs.config())      # one config for each device
    configs[i].enable_device(connected_devices[i])
    configs[i].enable_stream(rs.stream.color, 1920, 1080, rs.format.bgr8, 30)
    pipelines[i].start(configs[i])

try:
    while True:
        images = []
        for i in range(len(pipelines)):
            print("waiting for frame at cam", i)
            frames = pipelines[i].wait_for_frames()
            color_frame = frames.get_color_frame()
            images.append(np.asanyarray(color_frame.get_data()))

        # Stack all images horizontally
        image_composite = images[0]
        for i in range(1, len(images)):
            images_composite = np.hstack((image_composite, images[i]))

        # Show images from both cameras
        cv2.namedWindow('RealSense', cv2.WINDOW_NORMAL)
        cv2.imshow('RealSense', images_composite)

        cv2.waitKey(20)

finally:
    for i in range(len(pipelines)):
        pipelines[i].stop()