如何在视频上测试自定义 Faster RCNN 模型(使用 Detectron 2 和 pytorch)?
How to test custom Faster RCNN model(using Detectron 2 and pytorch) on video?
我已经在用于对象检测的自定义数据集上训练了 Faster RCNN 模型,并想在 视频 上对其进行测试。我可以在图像上测试结果,但我对如何为视频执行此操作感到困惑。
下面是图像推理代码:
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
cfg.DATASETS.TEST = ("my_dataset_test", )
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set the testing threshold for this model
predictor = DefaultPredictor(cfg)
test_metadata = MetadataCatalog.get("my_dataset_test")
from detectron2.utils.visualizer import ColorMode
import glob
for imageName in glob.glob('/content/test/*jpg'):
im = cv2.imread(imageName)
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
metadata=test_metadata,
scale=0.8
)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2_imshow(out.get_image()[:, :, ::-1])
有人告诉我如何调整此代码以检测视频吗?
使用的平台:Google Colab
技术Stack:Detectron2、Pytorch
检查这个循环:
from detectron2.utils.visualizer import ColorMode
import glob
import cv2
from google.colab.patches import cv2_imshow
cap = cv2.VideoCapture('/path/to/video')
while cap.isOpened():
ret, frame = cap.read()
# if frame is read correctly ret is True
if not ret:
break
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
metadata=test_metadata,
scale=0.8
)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2_imshow(out.get_image()[:, :, ::-1])
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
我已经在用于对象检测的自定义数据集上训练了 Faster RCNN 模型,并想在 视频 上对其进行测试。我可以在图像上测试结果,但我对如何为视频执行此操作感到困惑。
下面是图像推理代码:
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
cfg.DATASETS.TEST = ("my_dataset_test", )
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set the testing threshold for this model
predictor = DefaultPredictor(cfg)
test_metadata = MetadataCatalog.get("my_dataset_test")
from detectron2.utils.visualizer import ColorMode
import glob
for imageName in glob.glob('/content/test/*jpg'):
im = cv2.imread(imageName)
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
metadata=test_metadata,
scale=0.8
)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2_imshow(out.get_image()[:, :, ::-1])
有人告诉我如何调整此代码以检测视频吗?
使用的平台:Google Colab
技术Stack:Detectron2、Pytorch
检查这个循环:
from detectron2.utils.visualizer import ColorMode
import glob
import cv2
from google.colab.patches import cv2_imshow
cap = cv2.VideoCapture('/path/to/video')
while cap.isOpened():
ret, frame = cap.read()
# if frame is read correctly ret is True
if not ret:
break
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],
metadata=test_metadata,
scale=0.8
)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2_imshow(out.get_image()[:, :, ::-1])
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()