如何用 R 中另一个 tibble 的估算列替换 tibble 中的 NA 列
How to replace columns with NA in a tibble with imputed columns from another tibble in R
我想用 df
中的 NA
替换 de 列,使用 df2
中的估算值来获得 df3
。
我可以用 left_join
和 coalesce
来做,但我认为这种方法不能很好地概括。有没有更好的方法?
library(tidyverse)
df <- tibble(c = c("a", "a", "a", "b", "b", "b"),
d = c(1, 2, 3, 1, 2, 3),
x = c(1, NA, 3, 4, 5,6),
y = c(1, 2, NA, 4, 5, 6),
z = c(1, 2, 7, 4, 5, 6))
# I want to replace NA in df by df2
df2 <- tibble(c = c("a", "a", "a"),
d = c(1, 2, 3),
x = c(1, 2, 3),
y = c(1, 2, 2))
# to get
df3 <- tibble(c = c("a", "a", "a", "b", "b", "b"),
d = c(1, 2, 3, 1, 2, 3),
x = c(1, 2, 3, 4, 5, 6),
y = c(1, 2, 2, 4, 5, 6),
z = c(1, 2, 7, 4, 5, 6))
# is there a better solution than coalesce?
df3 <- df %>% left_join(df2, by = c("c", "d")) %>%
mutate(x = coalesce(x.x, x.y),
y = coalesce(y.x, y.y)) %>%
select(-x.x, -x.y, -y.x, -y.y)
Created on 2021-06-17 by the reprex package (v2.0.0)
这是一个合并 所有 .x
和 .y
列的自定义函数,可选择重命名和删除列。
#' Coalesce all columns duplicated in a previous join.
#'
#' Find all columns resulting from duplicate names after a join
#' operation (e.g., `dplyr::*_join` or `base::merge`), then coalesce
#' them pairwise.
#'
#' @param x data.frame
#' @param suffix character, length 2, the same string suffixes
#' appended to column names of duplicate columns; should be the same
#' as provided to `dplyr::*_join(., suffix=)` or `base::merge(.,
#' suffixes=)`
#' @param clean logical, whether to remove the suffixes from the LHS
#' columns and remove the columns on the RHS columns
#' @param strict logical, whether to enforce same-classes in the LHS
#' (".x") and RHS (".y") columns; while it is safer to set this to
#' true (default), sometimes the conversion of classes might be
#' acceptable, for instance, if one '.x' column is 'numeric' and its
#' corresponding '.y' column is 'integer', then relaxing the class
#' requirement might be acceptable
#' @return 'x', coalesced, optionally cleaned
#' @export
coalesce_all <- function(x, suffix = c(".x", ".y"),
clean = FALSE, strict = TRUE) {
nms <- colnames(x)
Xs <- endsWith(nms, suffix[1])
Ys <- endsWith(nms, suffix[2])
# x[Xs] <- Map(dplyr::coalesce, x[Xs], x[Ys])
# x[Xs] <- Map(data.table::fcoalesce, x[Xs], x[Ys])
x[Xs] <- Map(function(dotx, doty) {
if (strict) stopifnot(identical(class(dotx), class(doty)))
isna <- is.na(dotx)
replace(dotx, isna, doty[isna])
} , x[Xs], x[Ys])
if (clean) {
names(x)[Xs] <- gsub(glob2rx(paste0("*", suffix[1]), trim.head = TRUE), "", nms[Xs])
x[Ys] <- NULL
}
x
}
进行中:
df %>%
left_join(df2, by = c("c", "d")) %>%
coalesce_all()
# # A tibble: 6 x 7
# c d x.x y.x z x.y y.y
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 a 1 1 1 1 1 1
# 2 a 2 2 2 2 2 2
# 3 a 3 3 2 7 3 2
# 4 b 1 4 4 4 NA NA
# 5 b 2 5 5 5 NA NA
# 6 b 3 6 6 6 NA NA
df %>%
left_join(df2, by = c("c", "d")) %>%
coalesce_all(clean = TRUE)
# # A tibble: 6 x 5
# c d x y z
# <chr> <dbl> <dbl> <dbl> <dbl>
# 1 a 1 1 1 1
# 2 a 2 2 2 2
# 3 a 3 3 2 7
# 4 b 1 4 4 4
# 5 b 2 5 5 5
# 6 b 3 6 6 6
我在 Map
中包含了两个合并函数作为 base-R 的替代方法。优点之一是 strict
参数:dplyr::coalesce
将默默地允许合并 integer
和 numeric
,而 data.table::fcoalesce
则不允许。如果这是可取的,请使用您喜欢的。 (另一个优点是两个非基础合并函数都接受任意数量的列进行合并,这在这个实现中不是必需的。)
我尝试了另一种方法,过滤 c
,用 NA
删除 df
的所有列,用 df2
加入并绑定未过滤的行 df
与 df3
.
df3 <- df %>% filter(c == "a") %>% select_if(~ !any(is.na(.))) %>%
left_join(df2, by = c("c", "d"))
df3 <- bind_rows(df %>% filter(!c == "a"), df3) %>% arrange(c,d)
df3
#> # A tibble: 6 x 5
#> c d x y z
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 a 1 1 1 1
#> 2 a 2 2 2 2
#> 3 a 3 3 2 7
#> 4 b 1 4 4 4
#> 5 b 2 5 5 5
#> 6 b 3 6 6 6
Created on 2021-06-17 by the reprex package (v2.0.0)
您可以使用 across
并使用 .names
& .keep
参数一次性改变所有列,像这样
library(dplyr, warn.conflicts = F)
df %>% left_join(df2, by = c("c", "d")) %>%
mutate(across(ends_with('.x'), ~ coalesce(., get(gsub('.x', '.y', cur_column()))),
.names = '{gsub(".x$", "", .col)}'), .keep = 'unused')
#> # A tibble: 6 x 5
#> c d z x y
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 a 1 1 1 1
#> 2 a 2 2 2 2
#> 3 a 3 7 3 2
#> 4 b 1 4 4 4
#> 5 b 2 5 5 5
#> 6 b 3 6 6 6
由 reprex package (v2.0.0)
于 2021 年 6 月 17 日创建
我们可以使用{powerjoin}
library(powerjoin)
power_left_join(df, df2, by = c("c", "d"), conflict = coalesce_xy)
#> # A tibble: 6 × 5
#> c d z x y
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 a 1 1 1 1
#> 2 a 2 2 2 2
#> 3 a 3 7 3 2
#> 4 b 1 4 4 4
#> 5 b 2 5 5 5
#> 6 b 3 6 6 6
我想用 df
中的 NA
替换 de 列,使用 df2
中的估算值来获得 df3
。
我可以用 left_join
和 coalesce
来做,但我认为这种方法不能很好地概括。有没有更好的方法?
library(tidyverse)
df <- tibble(c = c("a", "a", "a", "b", "b", "b"),
d = c(1, 2, 3, 1, 2, 3),
x = c(1, NA, 3, 4, 5,6),
y = c(1, 2, NA, 4, 5, 6),
z = c(1, 2, 7, 4, 5, 6))
# I want to replace NA in df by df2
df2 <- tibble(c = c("a", "a", "a"),
d = c(1, 2, 3),
x = c(1, 2, 3),
y = c(1, 2, 2))
# to get
df3 <- tibble(c = c("a", "a", "a", "b", "b", "b"),
d = c(1, 2, 3, 1, 2, 3),
x = c(1, 2, 3, 4, 5, 6),
y = c(1, 2, 2, 4, 5, 6),
z = c(1, 2, 7, 4, 5, 6))
# is there a better solution than coalesce?
df3 <- df %>% left_join(df2, by = c("c", "d")) %>%
mutate(x = coalesce(x.x, x.y),
y = coalesce(y.x, y.y)) %>%
select(-x.x, -x.y, -y.x, -y.y)
Created on 2021-06-17 by the reprex package (v2.0.0)
这是一个合并 所有 .x
和 .y
列的自定义函数,可选择重命名和删除列。
#' Coalesce all columns duplicated in a previous join.
#'
#' Find all columns resulting from duplicate names after a join
#' operation (e.g., `dplyr::*_join` or `base::merge`), then coalesce
#' them pairwise.
#'
#' @param x data.frame
#' @param suffix character, length 2, the same string suffixes
#' appended to column names of duplicate columns; should be the same
#' as provided to `dplyr::*_join(., suffix=)` or `base::merge(.,
#' suffixes=)`
#' @param clean logical, whether to remove the suffixes from the LHS
#' columns and remove the columns on the RHS columns
#' @param strict logical, whether to enforce same-classes in the LHS
#' (".x") and RHS (".y") columns; while it is safer to set this to
#' true (default), sometimes the conversion of classes might be
#' acceptable, for instance, if one '.x' column is 'numeric' and its
#' corresponding '.y' column is 'integer', then relaxing the class
#' requirement might be acceptable
#' @return 'x', coalesced, optionally cleaned
#' @export
coalesce_all <- function(x, suffix = c(".x", ".y"),
clean = FALSE, strict = TRUE) {
nms <- colnames(x)
Xs <- endsWith(nms, suffix[1])
Ys <- endsWith(nms, suffix[2])
# x[Xs] <- Map(dplyr::coalesce, x[Xs], x[Ys])
# x[Xs] <- Map(data.table::fcoalesce, x[Xs], x[Ys])
x[Xs] <- Map(function(dotx, doty) {
if (strict) stopifnot(identical(class(dotx), class(doty)))
isna <- is.na(dotx)
replace(dotx, isna, doty[isna])
} , x[Xs], x[Ys])
if (clean) {
names(x)[Xs] <- gsub(glob2rx(paste0("*", suffix[1]), trim.head = TRUE), "", nms[Xs])
x[Ys] <- NULL
}
x
}
进行中:
df %>%
left_join(df2, by = c("c", "d")) %>%
coalesce_all()
# # A tibble: 6 x 7
# c d x.x y.x z x.y y.y
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 a 1 1 1 1 1 1
# 2 a 2 2 2 2 2 2
# 3 a 3 3 2 7 3 2
# 4 b 1 4 4 4 NA NA
# 5 b 2 5 5 5 NA NA
# 6 b 3 6 6 6 NA NA
df %>%
left_join(df2, by = c("c", "d")) %>%
coalesce_all(clean = TRUE)
# # A tibble: 6 x 5
# c d x y z
# <chr> <dbl> <dbl> <dbl> <dbl>
# 1 a 1 1 1 1
# 2 a 2 2 2 2
# 3 a 3 3 2 7
# 4 b 1 4 4 4
# 5 b 2 5 5 5
# 6 b 3 6 6 6
我在 Map
中包含了两个合并函数作为 base-R 的替代方法。优点之一是 strict
参数:dplyr::coalesce
将默默地允许合并 integer
和 numeric
,而 data.table::fcoalesce
则不允许。如果这是可取的,请使用您喜欢的。 (另一个优点是两个非基础合并函数都接受任意数量的列进行合并,这在这个实现中不是必需的。)
我尝试了另一种方法,过滤 c
,用 NA
删除 df
的所有列,用 df2
加入并绑定未过滤的行 df
与 df3
.
df3 <- df %>% filter(c == "a") %>% select_if(~ !any(is.na(.))) %>%
left_join(df2, by = c("c", "d"))
df3 <- bind_rows(df %>% filter(!c == "a"), df3) %>% arrange(c,d)
df3
#> # A tibble: 6 x 5
#> c d x y z
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 a 1 1 1 1
#> 2 a 2 2 2 2
#> 3 a 3 3 2 7
#> 4 b 1 4 4 4
#> 5 b 2 5 5 5
#> 6 b 3 6 6 6
Created on 2021-06-17 by the reprex package (v2.0.0)
您可以使用 across
并使用 .names
& .keep
参数一次性改变所有列,像这样
library(dplyr, warn.conflicts = F)
df %>% left_join(df2, by = c("c", "d")) %>%
mutate(across(ends_with('.x'), ~ coalesce(., get(gsub('.x', '.y', cur_column()))),
.names = '{gsub(".x$", "", .col)}'), .keep = 'unused')
#> # A tibble: 6 x 5
#> c d z x y
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 a 1 1 1 1
#> 2 a 2 2 2 2
#> 3 a 3 7 3 2
#> 4 b 1 4 4 4
#> 5 b 2 5 5 5
#> 6 b 3 6 6 6
由 reprex package (v2.0.0)
于 2021 年 6 月 17 日创建我们可以使用{powerjoin}
library(powerjoin)
power_left_join(df, df2, by = c("c", "d"), conflict = coalesce_xy)
#> # A tibble: 6 × 5
#> c d z x y
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 a 1 1 1 1
#> 2 a 2 2 2 2
#> 3 a 3 7 3 2
#> 4 b 1 4 4 4
#> 5 b 2 5 5 5
#> 6 b 3 6 6 6