如何安全地修补 matplotlib 的轴(不影响以后的调用)?
How to monkey patch matplotlib's axis safely (Not affecting future calls)?
我有一个使用 bar3d
可视化矩阵元素的函数。 I was trying to remove margins at the bounding limits of z-axis. I found this answer(第一个)使用 猴子补丁。所以我的代码看起来像这样:
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.axis3d import Axis
# function which applies monkey patching
def _remove_margins():
"""
Removes margins about z=0 and improves the style
"""
if not hasattr(Axis, "_get_coord_info_old"):
def _get_coord_info_new(self, renderer):
mins, maxs, centers, deltas, tc, highs = \
self._get_coord_info_old(renderer)
mins += deltas/4
maxs -= deltas/4
return mins, maxs, centers, deltas, tc, highs
Axis._get_coord_info_old = Axis._get_coord_info
Axis._get_coord_info = _get_coord_info_new
# function which visualizes the matrix
# ✅ this function should be affected by monkey patching
def visualize_matrix(M, figsize, ... ):
_remove_margins()
fig = plt.figure(figsize=figsize)
ax = Axes3D(fig)
ax.bar3d(...)
.
.
.
return fig, ax
# another function that uses Axes3D
# ⛔️ this function should not be affected by monkey patching
def visualize_sphere(...):
fig = plt.figure(figsize=figsize)
ax = Axes3D(fig)
.
.
.
return fig, ax
问题:
在 Axes3D
的未来调用中(例如使用 visualize_sphere
函数),由 monkey patching 所做的更改仍然存在。
问题:
如何通过monkey patch安全解决问题?
我更改了 monkey 补丁以仅对实例进行更改,而不是 class。
在创建 ax
.
后,将 patch_axis
应用于 ax.xaxis
、ax.yaxis
和 ax.zaxis
import matplotlib.pyplot as plt
import numpy as np
def patch_axis(axis):
def _get_coord_info_new(renderer):
mins, maxs, centers, deltas, tc, highs = _get_coord_info_old(renderer)
mins += deltas / 4
maxs -= deltas / 4
return mins, maxs, centers, deltas, tc, highs
_get_coord_info_old = axis._get_coord_info
axis._get_coord_info = _get_coord_info_new
def test():
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.margins(0)
for c, z in zip(['r', 'g', 'b', 'y'], [30, 20, 10, 0]):
xs = np.arange(20)
ys = np.random.rand(20)
# You can provide either a single color or an array. To demonstrate this,
# the first bar of each set will be colored cyan.
cs = [c] * len(xs)
cs[0] = 'c'
ax.bar(xs, ys, zs=z, zdir='y', color=cs, alpha=0.8)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
return fig, ax
# without the margin
fig, ax = test()
patch_axis(ax.xaxis)
patch_axis(ax.yaxis)
patch_axis(ax.zaxis)
fig.savefig("test1.png")
# with the margin
fig, ax = test()
fig.savefig("test2.png")
方法只是在classes的命名空间中定义的函数,访问实例方法隐式填充自身参数(见Class instances
in https://docs.python.org/3/reference/datamodel.html)。您可以通过在实例化添加的命名空间中分配不带自参数的函数来覆盖 bound method
。
>>> class C:
... def f(self): return 1
...
>>> C.f
<function C.f at 0x7f36a7eb53a0>
>>> c = C()
>>> c.f
<bound method C.f of <__main__.C object at 0x7f36a7f48eb0>>
>>> c.f()
1
>>> c.f = lambda: 2
>>> c.f()
2
我有一个使用 bar3d
可视化矩阵元素的函数。 I was trying to remove margins at the bounding limits of z-axis. I found this answer(第一个)使用 猴子补丁。所以我的代码看起来像这样:
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.axis3d import Axis
# function which applies monkey patching
def _remove_margins():
"""
Removes margins about z=0 and improves the style
"""
if not hasattr(Axis, "_get_coord_info_old"):
def _get_coord_info_new(self, renderer):
mins, maxs, centers, deltas, tc, highs = \
self._get_coord_info_old(renderer)
mins += deltas/4
maxs -= deltas/4
return mins, maxs, centers, deltas, tc, highs
Axis._get_coord_info_old = Axis._get_coord_info
Axis._get_coord_info = _get_coord_info_new
# function which visualizes the matrix
# ✅ this function should be affected by monkey patching
def visualize_matrix(M, figsize, ... ):
_remove_margins()
fig = plt.figure(figsize=figsize)
ax = Axes3D(fig)
ax.bar3d(...)
.
.
.
return fig, ax
# another function that uses Axes3D
# ⛔️ this function should not be affected by monkey patching
def visualize_sphere(...):
fig = plt.figure(figsize=figsize)
ax = Axes3D(fig)
.
.
.
return fig, ax
问题:
在 Axes3D
的未来调用中(例如使用 visualize_sphere
函数),由 monkey patching 所做的更改仍然存在。
问题:
如何通过monkey patch安全解决问题?
我更改了 monkey 补丁以仅对实例进行更改,而不是 class。
在创建 ax
.
patch_axis
应用于 ax.xaxis
、ax.yaxis
和 ax.zaxis
import matplotlib.pyplot as plt
import numpy as np
def patch_axis(axis):
def _get_coord_info_new(renderer):
mins, maxs, centers, deltas, tc, highs = _get_coord_info_old(renderer)
mins += deltas / 4
maxs -= deltas / 4
return mins, maxs, centers, deltas, tc, highs
_get_coord_info_old = axis._get_coord_info
axis._get_coord_info = _get_coord_info_new
def test():
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.margins(0)
for c, z in zip(['r', 'g', 'b', 'y'], [30, 20, 10, 0]):
xs = np.arange(20)
ys = np.random.rand(20)
# You can provide either a single color or an array. To demonstrate this,
# the first bar of each set will be colored cyan.
cs = [c] * len(xs)
cs[0] = 'c'
ax.bar(xs, ys, zs=z, zdir='y', color=cs, alpha=0.8)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
return fig, ax
# without the margin
fig, ax = test()
patch_axis(ax.xaxis)
patch_axis(ax.yaxis)
patch_axis(ax.zaxis)
fig.savefig("test1.png")
# with the margin
fig, ax = test()
fig.savefig("test2.png")
方法只是在classes的命名空间中定义的函数,访问实例方法隐式填充自身参数(见Class instances
in https://docs.python.org/3/reference/datamodel.html)。您可以通过在实例化添加的命名空间中分配不带自参数的函数来覆盖 bound method
。
>>> class C:
... def f(self): return 1
...
>>> C.f
<function C.f at 0x7f36a7eb53a0>
>>> c = C()
>>> c.f
<bound method C.f of <__main__.C object at 0x7f36a7f48eb0>>
>>> c.f()
1
>>> c.f = lambda: 2
>>> c.f()
2