如何使用每行的索引矩阵索引矩阵的行元素?

How to index row elements of a Matrix with a Matrix of indices for each row?

我有一个索引矩阵,例如

I = np.array([[1, 0, 2], [2, 1, 0]])

第 i 行的索引 select 是第 i 行中另一个矩阵 M 的一个元素。

所以有 M 例如

M = np.array([[6, 7, 8], [9, 10, 11])

M[I] 应该 select:

[[7, 6, 8], [11, 10, 9]]

我可以:

I1 = np.repeat(np.arange(0, I.shape[0]), I.shape[1])
I2 = np.ravel(I)
Result = M[I1, I2].reshape(I.shape)

但这看起来很复杂,我正在寻找更优雅的解决方案。最好不要压扁和整形。

示例中我使用了numpy,但实际上我使用的是jax。所以如果jax有更高效的解决方案,欢迎分享。

这一行代码怎么样?这个想法是枚举矩阵的行和行索引,所以你可以访问索引矩阵中的相应行。

import numpy as np

I = np.array([[1, 0, 2], [2, 1, 0]])
M = np.array([[6, 7, 8], [9, 10, 11]])

Result = np.array([row[I[i]] for i, row in enumerate(M)])
print(Result)

输出:

[[ 7  6  8]
 [11 10  9]]
In [108]: I = np.array([[1, 0, 2], [2, 1, 0]])
     ...: M = np.array([[6, 7, 8], [9, 10, 11]])
     ...: 
     ...: I,M

我必须在 M 中添加一个 ']'。

Out[108]: 
(array([[1, 0, 2],
        [2, 1, 0]]),
 array([[ 6,  7,  8],
        [ 9, 10, 11]]))

高级索引 broadcasting:

In [110]: M[np.arange(2)[:,None],I]
Out[110]: 
array([[ 7,  6,  8],
       [11, 10,  9]])

第一个索引具有形状 (2,1),它与 ​​I 到 select 的 (2,3) 形状的 (2,3) 值块配对。

np.take_along_axis 也可以在这里使用 M 的值,使用索引 I over axis=1:

>>> np.take_along_axis(M, I, axis=1)

array([[ 7,  6,  8],
       [11, 10,  9]])