ValueError: Shape must be at least rank 3 but is rank 2 for '{{node BiasAdd}} = BiasAdd[T=DT_FLOAT, data_format="NCHW"](add, bias)' with input shapes:
ValueError: Shape must be at least rank 3 but is rank 2 for '{{node BiasAdd}} = BiasAdd[T=DT_FLOAT, data_format="NCHW"](add, bias)' with input shapes:
完成
我只是想 运行 并复制以下项目:https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/。基本上到目前为止,我已经完成了链接项目中的所有操作,但是我遇到了以下问题:
我自己的数据集 - 我试过数据框:
- 我已经尝试使用他的原始数据集完全 100% 使用他的代码,但我仍然有同样的错误
- A.) 有 2 列(第一列日期和第二列目标值),
- B.) 索引和数据帧中的时间码仅包含目标值。
输入代码:
# reshape into X=t and Y=t+1
look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
# reshape input to be [samples, time steps, features]
trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
# create and fit the LSTM network
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
输出错误:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in _create_c_op(graph, node_def, inputs, control_inputs, op_def)
1879 try:
-> 1880 c_op = pywrap_tf_session.TF_FinishOperation(op_desc)
1881 except errors.InvalidArgumentError as e:
InvalidArgumentError: Shape must be at least rank 3 but is rank 2 for '{{node BiasAdd}} = BiasAdd[T=DT_FLOAT, data_format="NCHW"](add, bias)' with input shapes: [?,16], [16].
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-146-278c5358bee6> in <module>
1 # create and fit the LSTM network
2 model = Sequential()
----> 3 model.add(LSTM(4, input_shape=(1, look_back)))
4 model.add(Dense(1))
5 model.compile(loss='mean_squared_error', optimizer='adam')
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/training/tracking/base.py in _method_wrapper(self, *args, **kwargs)
520 self._self_setattr_tracking = False # pylint: disable=protected-access
521 try:
--> 522 result = method(self, *args, **kwargs)
523 finally:
524 self._self_setattr_tracking = previous_value # pylint: disable=protected-access
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/engine/sequential.py in add(self, layer)
206 # and create the node connecting the current layer
207 # to the input layer we just created.
--> 208 layer(x)
209 set_inputs = True
210
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/layers/recurrent.py in __call__(self, inputs, initial_state, constants, **kwargs)
658
659 if initial_state is None and constants is None:
--> 660 return super(RNN, self).__call__(inputs, **kwargs)
661
662 # If any of `initial_state` or `constants` are specified and are Keras
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/engine/base_layer.py in __call__(self, *args, **kwargs)
944 if _in_functional_construction_mode(self, inputs, args, kwargs, input_list):
945 return self._functional_construction_call(inputs, args, kwargs,
--> 946 input_list)
947
948 # Maintains info about the `Layer.call` stack.
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/engine/base_layer.py in _functional_construction_call(self, inputs, args, kwargs, input_list)
1082 # Check input assumptions set after layer building, e.g. input shape.
1083 outputs = self._keras_tensor_symbolic_call(
-> 1084 inputs, input_masks, args, kwargs)
1085
1086 if outputs is None:
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/engine/base_layer.py in _keras_tensor_symbolic_call(self, inputs, input_masks, args, kwargs)
814 return tf.nest.map_structure(keras_tensor.KerasTensor, output_signature)
815 else:
--> 816 return self._infer_output_signature(inputs, args, kwargs, input_masks)
817
818 def _infer_output_signature(self, inputs, args, kwargs, input_masks):
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/engine/base_layer.py in _infer_output_signature(self, inputs, args, kwargs, input_masks)
854 self._maybe_build(inputs)
855 inputs = self._maybe_cast_inputs(inputs)
--> 856 outputs = call_fn(inputs, *args, **kwargs)
857
858 self._handle_activity_regularization(inputs, outputs)
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/layers/recurrent_v2.py in call(self, inputs, mask, training, initial_state)
1250 else:
1251 (last_output, outputs, new_h, new_c,
-> 1252 runtime) = lstm_with_backend_selection(**normal_lstm_kwargs)
1253
1254 states = [new_h, new_c]
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/layers/recurrent_v2.py in lstm_with_backend_selection(inputs, init_h, init_c, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask)
1645 # Call the normal LSTM impl and register the CuDNN impl function. The
1646 # grappler will kick in during session execution to optimize the graph.
-> 1647 last_output, outputs, new_h, new_c, runtime = defun_standard_lstm(**params)
1648 _function_register(defun_gpu_lstm, **params)
1649
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs)
3020 with self._lock:
3021 (graph_function,
-> 3022 filtered_flat_args) = self._maybe_define_function(args, kwargs)
3023 return graph_function._call_flat(
3024 filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
3442
3443 self._function_cache.missed.add(call_context_key)
-> 3444 graph_function = self._create_graph_function(args, kwargs)
3445 self._function_cache.primary[cache_key] = graph_function
3446
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3287 arg_names=arg_names,
3288 override_flat_arg_shapes=override_flat_arg_shapes,
-> 3289 capture_by_value=self._capture_by_value),
3290 self._function_attributes,
3291 function_spec=self.function_spec,
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
997 _, original_func = tf_decorator.unwrap(python_func)
998
--> 999 func_outputs = python_func(*func_args, **func_kwargs)
1000
1001 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/layers/recurrent_v2.py in standard_lstm(inputs, init_h, init_c, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask)
1386 input_length=(sequence_lengths
1387 if sequence_lengths is not None else timesteps),
-> 1388 zero_output_for_mask=zero_output_for_mask)
1389 return (last_output, outputs, new_states[0], new_states[1],
1390 _runtime(_RUNTIME_CPU))
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)
204 """Call target, and fall back on dispatchers if there is a TypeError."""
205 try:
--> 206 return target(*args, **kwargs)
207 except (TypeError, ValueError):
208 # Note: convert_to_eager_tensor currently raises a ValueError, not a
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/backend.py in rnn(step_function, inputs, initial_states, go_backwards, mask, constants, unroll, input_length, time_major, zero_output_for_mask)
4341 # the value is discarded.
4342 output_time_zero, _ = step_function(
-> 4343 input_time_zero, tuple(initial_states) + tuple(constants))
4344 output_ta = tuple(
4345 tf.TensorArray(
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/layers/recurrent_v2.py in step(cell_inputs, cell_states)
1364 z = backend.dot(cell_inputs, kernel)
1365 z += backend.dot(h_tm1, recurrent_kernel)
-> 1366 z = backend.bias_add(z, bias)
1367
1368 z0, z1, z2, z3 = tf.split(z, 4, axis=1)
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)
204 """Call target, and fall back on dispatchers if there is a TypeError."""
205 try:
--> 206 return target(*args, **kwargs)
207 except (TypeError, ValueError):
208 # Note: convert_to_eager_tensor currently raises a ValueError, not a
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/backend.py in bias_add(x, bias, data_format)
5961 if len(bias_shape) == 1:
5962 if data_format == 'channels_first':
-> 5963 return tf.nn.bias_add(x, bias, data_format='NCHW')
5964 return tf.nn.bias_add(x, bias, data_format='NHWC')
5965 if ndim(x) in (3, 4, 5):
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)
204 """Call target, and fall back on dispatchers if there is a TypeError."""
205 try:
--> 206 return target(*args, **kwargs)
207 except (TypeError, ValueError):
208 # Note: convert_to_eager_tensor currently raises a ValueError, not a
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/ops/nn_ops.py in bias_add(value, bias, data_format, name)
3376 else:
3377 return gen_nn_ops.bias_add(
-> 3378 value, bias, data_format=data_format, name=name)
3379
3380
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/ops/gen_nn_ops.py in bias_add(value, bias, data_format, name)
689 data_format = _execute.make_str(data_format, "data_format")
690 _, _, _op, _outputs = _op_def_library._apply_op_helper(
--> 691 "BiasAdd", value=value, bias=bias, data_format=data_format, name=name)
692 _result = _outputs[:]
693 if _execute.must_record_gradient():
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py in _apply_op_helper(op_type_name, name, **keywords)
748 op = g._create_op_internal(op_type_name, inputs, dtypes=None,
749 name=scope, input_types=input_types,
--> 750 attrs=attr_protos, op_def=op_def)
751
752 # `outputs` is returned as a separate return value so that the output
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in _create_op_internal(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)
599 return super(FuncGraph, self)._create_op_internal( # pylint: disable=protected-access
600 op_type, captured_inputs, dtypes, input_types, name, attrs, op_def,
--> 601 compute_device)
602
603 def capture(self, tensor, name=None, shape=None):
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in _create_op_internal(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)
3563 input_types=input_types,
3564 original_op=self._default_original_op,
-> 3565 op_def=op_def)
3566 self._create_op_helper(ret, compute_device=compute_device)
3567 return ret
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in __init__(self, node_def, g, inputs, output_types, control_inputs, input_types, original_op, op_def)
2040 op_def = self._graph._get_op_def(node_def.op)
2041 self._c_op = _create_c_op(self._graph, node_def, inputs,
-> 2042 control_input_ops, op_def)
2043 name = compat.as_str(node_def.name)
2044
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in _create_c_op(graph, node_def, inputs, control_inputs, op_def)
1881 except errors.InvalidArgumentError as e:
1882 # Convert to ValueError for backwards compatibility.
-> 1883 raise ValueError(str(e))
1884
1885 return c_op
ValueError: Shape must be at least rank 3 but is rank 2 for '{{node BiasAdd}} = BiasAdd[T=DT_FLOAT, data_format="NCHW"](add, bias)' with input shapes: [?,16], [16].
尝试过的解决方案
- 答案中没有实际的解决方案 - https://www.reddit.com/r/tensorflow/comments/ipbse4/valueerror_shape_must_be_at_least_rank_3_but_is/
- 答案中没有实际的解决方案 - https://github.com/tensorflow/recommenders/issues/237
- 答案中没有实际解决方案,不同的输入代码 - ValueError: Shape must be rank 2 but is rank 3 for 'MatMul'
解决方案
- 我切换到 AWS EC2 SageMaker“Python [conda env:tensorflow2_p36]”所以这是准确的预制环境“tensorflow2_p36”
- 当我在某些地方阅读它时,它可能是与 NumPy 的库冲突。
完成
我只是想 运行 并复制以下项目:https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/。基本上到目前为止,我已经完成了链接项目中的所有操作,但是我遇到了以下问题:
我自己的数据集 - 我试过数据框:
- 我已经尝试使用他的原始数据集完全 100% 使用他的代码,但我仍然有同样的错误
- A.) 有 2 列(第一列日期和第二列目标值),
- B.) 索引和数据帧中的时间码仅包含目标值。
输入代码:
# reshape into X=t and Y=t+1
look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
# reshape input to be [samples, time steps, features]
trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
# create and fit the LSTM network
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
输出错误:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in _create_c_op(graph, node_def, inputs, control_inputs, op_def)
1879 try:
-> 1880 c_op = pywrap_tf_session.TF_FinishOperation(op_desc)
1881 except errors.InvalidArgumentError as e:
InvalidArgumentError: Shape must be at least rank 3 but is rank 2 for '{{node BiasAdd}} = BiasAdd[T=DT_FLOAT, data_format="NCHW"](add, bias)' with input shapes: [?,16], [16].
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-146-278c5358bee6> in <module>
1 # create and fit the LSTM network
2 model = Sequential()
----> 3 model.add(LSTM(4, input_shape=(1, look_back)))
4 model.add(Dense(1))
5 model.compile(loss='mean_squared_error', optimizer='adam')
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/training/tracking/base.py in _method_wrapper(self, *args, **kwargs)
520 self._self_setattr_tracking = False # pylint: disable=protected-access
521 try:
--> 522 result = method(self, *args, **kwargs)
523 finally:
524 self._self_setattr_tracking = previous_value # pylint: disable=protected-access
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/engine/sequential.py in add(self, layer)
206 # and create the node connecting the current layer
207 # to the input layer we just created.
--> 208 layer(x)
209 set_inputs = True
210
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/layers/recurrent.py in __call__(self, inputs, initial_state, constants, **kwargs)
658
659 if initial_state is None and constants is None:
--> 660 return super(RNN, self).__call__(inputs, **kwargs)
661
662 # If any of `initial_state` or `constants` are specified and are Keras
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/engine/base_layer.py in __call__(self, *args, **kwargs)
944 if _in_functional_construction_mode(self, inputs, args, kwargs, input_list):
945 return self._functional_construction_call(inputs, args, kwargs,
--> 946 input_list)
947
948 # Maintains info about the `Layer.call` stack.
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/engine/base_layer.py in _functional_construction_call(self, inputs, args, kwargs, input_list)
1082 # Check input assumptions set after layer building, e.g. input shape.
1083 outputs = self._keras_tensor_symbolic_call(
-> 1084 inputs, input_masks, args, kwargs)
1085
1086 if outputs is None:
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/engine/base_layer.py in _keras_tensor_symbolic_call(self, inputs, input_masks, args, kwargs)
814 return tf.nest.map_structure(keras_tensor.KerasTensor, output_signature)
815 else:
--> 816 return self._infer_output_signature(inputs, args, kwargs, input_masks)
817
818 def _infer_output_signature(self, inputs, args, kwargs, input_masks):
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/engine/base_layer.py in _infer_output_signature(self, inputs, args, kwargs, input_masks)
854 self._maybe_build(inputs)
855 inputs = self._maybe_cast_inputs(inputs)
--> 856 outputs = call_fn(inputs, *args, **kwargs)
857
858 self._handle_activity_regularization(inputs, outputs)
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/layers/recurrent_v2.py in call(self, inputs, mask, training, initial_state)
1250 else:
1251 (last_output, outputs, new_h, new_c,
-> 1252 runtime) = lstm_with_backend_selection(**normal_lstm_kwargs)
1253
1254 states = [new_h, new_c]
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/layers/recurrent_v2.py in lstm_with_backend_selection(inputs, init_h, init_c, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask)
1645 # Call the normal LSTM impl and register the CuDNN impl function. The
1646 # grappler will kick in during session execution to optimize the graph.
-> 1647 last_output, outputs, new_h, new_c, runtime = defun_standard_lstm(**params)
1648 _function_register(defun_gpu_lstm, **params)
1649
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/eager/function.py in __call__(self, *args, **kwargs)
3020 with self._lock:
3021 (graph_function,
-> 3022 filtered_flat_args) = self._maybe_define_function(args, kwargs)
3023 return graph_function._call_flat(
3024 filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
3442
3443 self._function_cache.missed.add(call_context_key)
-> 3444 graph_function = self._create_graph_function(args, kwargs)
3445 self._function_cache.primary[cache_key] = graph_function
3446
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3287 arg_names=arg_names,
3288 override_flat_arg_shapes=override_flat_arg_shapes,
-> 3289 capture_by_value=self._capture_by_value),
3290 self._function_attributes,
3291 function_spec=self.function_spec,
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
997 _, original_func = tf_decorator.unwrap(python_func)
998
--> 999 func_outputs = python_func(*func_args, **func_kwargs)
1000
1001 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/layers/recurrent_v2.py in standard_lstm(inputs, init_h, init_c, kernel, recurrent_kernel, bias, mask, time_major, go_backwards, sequence_lengths, zero_output_for_mask)
1386 input_length=(sequence_lengths
1387 if sequence_lengths is not None else timesteps),
-> 1388 zero_output_for_mask=zero_output_for_mask)
1389 return (last_output, outputs, new_states[0], new_states[1],
1390 _runtime(_RUNTIME_CPU))
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)
204 """Call target, and fall back on dispatchers if there is a TypeError."""
205 try:
--> 206 return target(*args, **kwargs)
207 except (TypeError, ValueError):
208 # Note: convert_to_eager_tensor currently raises a ValueError, not a
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/backend.py in rnn(step_function, inputs, initial_states, go_backwards, mask, constants, unroll, input_length, time_major, zero_output_for_mask)
4341 # the value is discarded.
4342 output_time_zero, _ = step_function(
-> 4343 input_time_zero, tuple(initial_states) + tuple(constants))
4344 output_ta = tuple(
4345 tf.TensorArray(
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/layers/recurrent_v2.py in step(cell_inputs, cell_states)
1364 z = backend.dot(cell_inputs, kernel)
1365 z += backend.dot(h_tm1, recurrent_kernel)
-> 1366 z = backend.bias_add(z, bias)
1367
1368 z0, z1, z2, z3 = tf.split(z, 4, axis=1)
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)
204 """Call target, and fall back on dispatchers if there is a TypeError."""
205 try:
--> 206 return target(*args, **kwargs)
207 except (TypeError, ValueError):
208 # Note: convert_to_eager_tensor currently raises a ValueError, not a
~/anaconda3/envs/tfall/lib/python3.7/site-packages/keras/backend.py in bias_add(x, bias, data_format)
5961 if len(bias_shape) == 1:
5962 if data_format == 'channels_first':
-> 5963 return tf.nn.bias_add(x, bias, data_format='NCHW')
5964 return tf.nn.bias_add(x, bias, data_format='NHWC')
5965 if ndim(x) in (3, 4, 5):
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)
204 """Call target, and fall back on dispatchers if there is a TypeError."""
205 try:
--> 206 return target(*args, **kwargs)
207 except (TypeError, ValueError):
208 # Note: convert_to_eager_tensor currently raises a ValueError, not a
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/ops/nn_ops.py in bias_add(value, bias, data_format, name)
3376 else:
3377 return gen_nn_ops.bias_add(
-> 3378 value, bias, data_format=data_format, name=name)
3379
3380
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/ops/gen_nn_ops.py in bias_add(value, bias, data_format, name)
689 data_format = _execute.make_str(data_format, "data_format")
690 _, _, _op, _outputs = _op_def_library._apply_op_helper(
--> 691 "BiasAdd", value=value, bias=bias, data_format=data_format, name=name)
692 _result = _outputs[:]
693 if _execute.must_record_gradient():
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py in _apply_op_helper(op_type_name, name, **keywords)
748 op = g._create_op_internal(op_type_name, inputs, dtypes=None,
749 name=scope, input_types=input_types,
--> 750 attrs=attr_protos, op_def=op_def)
751
752 # `outputs` is returned as a separate return value so that the output
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in _create_op_internal(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)
599 return super(FuncGraph, self)._create_op_internal( # pylint: disable=protected-access
600 op_type, captured_inputs, dtypes, input_types, name, attrs, op_def,
--> 601 compute_device)
602
603 def capture(self, tensor, name=None, shape=None):
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in _create_op_internal(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)
3563 input_types=input_types,
3564 original_op=self._default_original_op,
-> 3565 op_def=op_def)
3566 self._create_op_helper(ret, compute_device=compute_device)
3567 return ret
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in __init__(self, node_def, g, inputs, output_types, control_inputs, input_types, original_op, op_def)
2040 op_def = self._graph._get_op_def(node_def.op)
2041 self._c_op = _create_c_op(self._graph, node_def, inputs,
-> 2042 control_input_ops, op_def)
2043 name = compat.as_str(node_def.name)
2044
~/anaconda3/envs/tfall/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in _create_c_op(graph, node_def, inputs, control_inputs, op_def)
1881 except errors.InvalidArgumentError as e:
1882 # Convert to ValueError for backwards compatibility.
-> 1883 raise ValueError(str(e))
1884
1885 return c_op
ValueError: Shape must be at least rank 3 but is rank 2 for '{{node BiasAdd}} = BiasAdd[T=DT_FLOAT, data_format="NCHW"](add, bias)' with input shapes: [?,16], [16].
尝试过的解决方案
- 答案中没有实际的解决方案 - https://www.reddit.com/r/tensorflow/comments/ipbse4/valueerror_shape_must_be_at_least_rank_3_but_is/
- 答案中没有实际的解决方案 - https://github.com/tensorflow/recommenders/issues/237
- 答案中没有实际解决方案,不同的输入代码 - ValueError: Shape must be rank 2 but is rank 3 for 'MatMul'
解决方案
- 我切换到 AWS EC2 SageMaker“Python [conda env:tensorflow2_p36]”所以这是准确的预制环境“tensorflow2_p36”
- 当我在某些地方阅读它时,它可能是与 NumPy 的库冲突。