准确度值在训练过程中上下波动
Accuracy value goes up and down on the training process
训练网络后,我注意到准确率上下波动。最初我认为这是由学习率引起的,但它设置为非常小的值。请检查随附的屏幕截图。
Plot Accuracy Screenshot
我的网络(在 Pytorch 中)如下所示:
class Network(nn.Module):
def __init__(self):
super(Network,self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3,16,kernel_size=3),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.layer2 = nn.Sequential(
nn.Conv2d(16,32, kernel_size=3),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.layer3 = nn.Sequential(
nn.Conv2d(32,64, kernel_size=3),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.fc1 = nn.Linear(17*17*64,512)
self.fc2 = nn.Linear(512,1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self,x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = out.view(out.size(0),-1)
out = self.relu(self.fc1(out))
out = self.fc2(out)
out = torch.sigmoid(out)
return out
我使用 RMSprop 作为优化器,使用 BCELoss 作为标准。 学习率设置为0.001
训练过程如下:
epochs = 15
itr = 1
p_itr = 100
model.train()
total_loss = 0
loss_list = []
acc_list = []
for epoch in range(epochs):
for samples, labels in train_loader:
samples, labels = samples.to(device), labels.to(device)
optimizer.zero_grad()
output = model(samples)
labels = labels.unsqueeze(-1)
labels = labels.float()
loss = criterion(output, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
scheduler.step()
if itr%p_itr == 0:
pred = torch.argmax(output, dim=1)
correct = pred.eq(labels)
acc = torch.mean(correct.float())
print('[Epoch {}/{}] Iteration {} -> Train Loss: {:.4f}, Accuracy: {:.3f}'.format(epoch+1, epochs, itr, total_loss/p_itr, acc))
loss_list.append(total_loss/p_itr)
acc_list.append(acc)
total_loss = 0
itr += 1
我的数据集很小——2000 次训练和 1000 次验证(二进制分类 0/1)。我想进行 80/20 拆分,但我被要求保持这样。我在想对于这么小的数据集来说架构可能太复杂了。
在训练过程中有什么可能导致这种跳跃的命中吗?
你这里的代码是错误的:pred = torch.argmax(output, dim=1)
此行用于具有交叉熵损失的多类分类。
您的任务是二元分类,因此 pred
值是错误的。更改为:
if itr%p_itr == 0:
pred = torch.round(output)
....
您可以将优化器更改为 Adam
、SGD
或 RMSprop
以找到合适的优化器来帮助您更快地覆盖模型。
同时更改 forward()
函数:
def forward(self,x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = out.view(out.size(0),-1)
out = self.relu(self.fc1(out))
out = self.fc2(out)
return self.sigmoid(out) #use your forward is ok, but this cleaner
训练网络后,我注意到准确率上下波动。最初我认为这是由学习率引起的,但它设置为非常小的值。请检查随附的屏幕截图。 Plot Accuracy Screenshot
我的网络(在 Pytorch 中)如下所示:
class Network(nn.Module):
def __init__(self):
super(Network,self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(3,16,kernel_size=3),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.layer2 = nn.Sequential(
nn.Conv2d(16,32, kernel_size=3),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.layer3 = nn.Sequential(
nn.Conv2d(32,64, kernel_size=3),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.fc1 = nn.Linear(17*17*64,512)
self.fc2 = nn.Linear(512,1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self,x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = out.view(out.size(0),-1)
out = self.relu(self.fc1(out))
out = self.fc2(out)
out = torch.sigmoid(out)
return out
我使用 RMSprop 作为优化器,使用 BCELoss 作为标准。 学习率设置为0.001
训练过程如下:
epochs = 15
itr = 1
p_itr = 100
model.train()
total_loss = 0
loss_list = []
acc_list = []
for epoch in range(epochs):
for samples, labels in train_loader:
samples, labels = samples.to(device), labels.to(device)
optimizer.zero_grad()
output = model(samples)
labels = labels.unsqueeze(-1)
labels = labels.float()
loss = criterion(output, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
scheduler.step()
if itr%p_itr == 0:
pred = torch.argmax(output, dim=1)
correct = pred.eq(labels)
acc = torch.mean(correct.float())
print('[Epoch {}/{}] Iteration {} -> Train Loss: {:.4f}, Accuracy: {:.3f}'.format(epoch+1, epochs, itr, total_loss/p_itr, acc))
loss_list.append(total_loss/p_itr)
acc_list.append(acc)
total_loss = 0
itr += 1
我的数据集很小——2000 次训练和 1000 次验证(二进制分类 0/1)。我想进行 80/20 拆分,但我被要求保持这样。我在想对于这么小的数据集来说架构可能太复杂了。
在训练过程中有什么可能导致这种跳跃的命中吗?
你这里的代码是错误的:pred = torch.argmax(output, dim=1)
此行用于具有交叉熵损失的多类分类。
您的任务是二元分类,因此 pred
值是错误的。更改为:
if itr%p_itr == 0:
pred = torch.round(output)
....
您可以将优化器更改为 Adam
、SGD
或 RMSprop
以找到合适的优化器来帮助您更快地覆盖模型。
同时更改 forward()
函数:
def forward(self,x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = out.view(out.size(0),-1)
out = self.relu(self.fc1(out))
out = self.fc2(out)
return self.sigmoid(out) #use your forward is ok, but this cleaner