Keras 和 tensorflow 在 MobileNetV3 上进行迁移学习时发生冲突
Keras and tensorflow conflict when transfer learning on MobileNetV3
我正在尝试在 Keras 中使用 MobileNetV3 进行迁移学习,但我遇到了一些问题。
from keras.models import Model
from keras.layers import GlobalMaxPooling2D, Dense, Dropout
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint
from tensorflow.keras.applications import MobileNetV3Small
import numpy as np
from tqdm import tqdm
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
pretrained_model = MobileNetV3Small(input_shape=(224,224,3),
weights="imagenet",
include_top=False)
# freeze all layers except the last one
for layer in pretrained_model.layers:
layer.trainable = False
pretrained_model.layers[-1].trainable = True
# combine the model with some extra layers for classification
last_output = pretrained_model.layers[-1].output
x = GlobalMaxPooling2D()(last_output)
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(1, activation='sigmoid')(x)
model = Model(pretrained_model.input, x)
当我尝试制作密集层时出现此错误:
TypeError: Cannot convert a symbolic Keras input/output to a numpy array. This error may indicate that you're trying to pass a symbolic value to a NumPy call, which is not supported. Or, you may be trying to pass Keras symbolic inputs/outputs to a TF API that does not register dispatching, preventing Keras from automatically converting the API call to a lambda layer in the Functional Model.
但已通过添加以下代码片段修复:
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
当我包含上面的代码修复时,调用 model.fit()
:
时出现此错误
FailedPreconditionError: 2 root error(s) found.
(0) Failed precondition: Could not find variable Conv_1_2/kernel. This could mean that the variable has been deleted. In TF1, it can also mean the variable is uninitialized. Debug info: container=localhost, status=Not found: Resource localhost/Conv_1_2/kernel/N10tensorflow3VarE does not exist.
[[{{node Conv_1_2/Conv2D/ReadVariableOp}}]]
[[_arg_dense_12_target_0_1/_100]]
(1) Failed precondition: Could not find variable Conv_1_2/kernel. This could mean that the variable has been deleted. In TF1, it can also mean the variable is uninitialized. Debug info: container=localhost, status=Not found: Resource localhost/Conv_1_2/kernel/N10tensorflow3VarE does not exist.
[[{{node Conv_1_2/Conv2D/ReadVariableOp}}]]
0 successful operations.
0 derived errors ignored.
如何解决这些问题并训练模型?
来自评论
Don't mix tf.keras
and standalone keras
. They are not compatible. Only use one of them (paraphrased from Frightera)
工作代码如下所示
from tensorflow.keras.models import Model
from tensorflow.keras.layers import GlobalMaxPooling2D, Dense, Dropout
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.applications import MobileNetV3Small
import numpy as np
from tqdm import tqdm
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
pretrained_model = MobileNetV3Small(input_shape=(224,224,3),
weights="imagenet",
include_top=False)
# freeze all layers except the last one
for layer in pretrained_model.layers:
layer.trainable = False
pretrained_model.layers[-1].trainable = True
# combine the model with some extra layers for classification
last_output = pretrained_model.layers[-1].output
x = GlobalMaxPooling2D()(last_output)
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(1, activation='sigmoid')(x)
model = Model(pretrained_model.input, x)
我正在尝试在 Keras 中使用 MobileNetV3 进行迁移学习,但我遇到了一些问题。
from keras.models import Model
from keras.layers import GlobalMaxPooling2D, Dense, Dropout
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint
from tensorflow.keras.applications import MobileNetV3Small
import numpy as np
from tqdm import tqdm
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
pretrained_model = MobileNetV3Small(input_shape=(224,224,3),
weights="imagenet",
include_top=False)
# freeze all layers except the last one
for layer in pretrained_model.layers:
layer.trainable = False
pretrained_model.layers[-1].trainable = True
# combine the model with some extra layers for classification
last_output = pretrained_model.layers[-1].output
x = GlobalMaxPooling2D()(last_output)
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(1, activation='sigmoid')(x)
model = Model(pretrained_model.input, x)
当我尝试制作密集层时出现此错误:
TypeError: Cannot convert a symbolic Keras input/output to a numpy array. This error may indicate that you're trying to pass a symbolic value to a NumPy call, which is not supported. Or, you may be trying to pass Keras symbolic inputs/outputs to a TF API that does not register dispatching, preventing Keras from automatically converting the API call to a lambda layer in the Functional Model.
但已通过添加以下代码片段修复:
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
当我包含上面的代码修复时,调用 model.fit()
:
FailedPreconditionError: 2 root error(s) found.
(0) Failed precondition: Could not find variable Conv_1_2/kernel. This could mean that the variable has been deleted. In TF1, it can also mean the variable is uninitialized. Debug info: container=localhost, status=Not found: Resource localhost/Conv_1_2/kernel/N10tensorflow3VarE does not exist.
[[{{node Conv_1_2/Conv2D/ReadVariableOp}}]]
[[_arg_dense_12_target_0_1/_100]]
(1) Failed precondition: Could not find variable Conv_1_2/kernel. This could mean that the variable has been deleted. In TF1, it can also mean the variable is uninitialized. Debug info: container=localhost, status=Not found: Resource localhost/Conv_1_2/kernel/N10tensorflow3VarE does not exist.
[[{{node Conv_1_2/Conv2D/ReadVariableOp}}]]
0 successful operations.
0 derived errors ignored.
如何解决这些问题并训练模型?
来自评论
Don't mix
tf.keras
and standalonekeras
. They are not compatible. Only use one of them (paraphrased from Frightera)
工作代码如下所示
from tensorflow.keras.models import Model
from tensorflow.keras.layers import GlobalMaxPooling2D, Dense, Dropout
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.applications import MobileNetV3Small
import numpy as np
from tqdm import tqdm
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
pretrained_model = MobileNetV3Small(input_shape=(224,224,3),
weights="imagenet",
include_top=False)
# freeze all layers except the last one
for layer in pretrained_model.layers:
layer.trainable = False
pretrained_model.layers[-1].trainable = True
# combine the model with some extra layers for classification
last_output = pretrained_model.layers[-1].output
x = GlobalMaxPooling2D()(last_output)
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(1, activation='sigmoid')(x)
model = Model(pretrained_model.input, x)