有符号整数的最低有效位 (LSB) 取反

Negation of least significant bit (LSB) of signed integer

This 答案演示了整数 LSB 的取反。当使用负(有符号)整数时,这种方法没有产生预期的结果。让我们看一些代码:

a = 4

print()
print("a: " + str(a))
print("binary version of a: " + bin(a))

a = a | 1

print("binary version of a after negation of LSB: " + bin(a))
print("a after negation of LSB: " + str(a))
print()

b = 5

print("b: " + str(b))
print("binary version of b: " + bin(b))

b = b & ~1

print("binary version of b after negation of LSB: " + bin(b))
print("b after negation of LSB: " + str(b))
print()

c = -4

print("c: " + str(c))
print("binary version of c: " + bin(c))

c = c | 1

print("binary version of c after negation of LSB: " + bin(c))
print("c after negation of LSB: " + str(c))
print()

d = -5

print("d: " + str(d))
print("binary version of d: " + bin(d))

d = d & ~1

print("binary version of d after negation of LSB: " + bin(d))
print("d after negation of LSB: " + str(d))

对 LSB 求反后 c 的期望值为 -5 而不是 -3。同样,LSB 取反后 d 的期望值是 -4 而不是 -6。为什么 cd 的实际值不符合它们的预期值?

我认为这里的问题是 python 将负数存储为它们的二进制补码,但不会以这种方式打印出来。让事情变得非常混乱!这 post here goes into more detail about it,但我们可以通过一个简单的示例了解发生了什么:

-4 二进制为 0b11111100(4 的补码)

1 是正数,所以在二进制中它只是 0b00000001

当你或那两个人在一起时,你会得到:

0b11111101 是-3(二进制补码)的二进制表示

used this site求补码,值得注意的是python整数是32位而不是8位,所以[=24=前面多了24个1 ]的补数和正数前面的24个额外的0(只要两者都低于abs(255))