python 中的颜色检测

Detection of colour in python

有谁知道如何让我的程序在相机检测到特定颜色时显示?我的程序目前可以检测颜色(并在检测到的颜色周围显示一个方框),但我希望程序 在检测到特定颜色时显示代码.

例如。程序检测到红色时显示 1,检测到绿色时显示 0。

我不确定如何编写程序代码来显示这一点。有人有什么想法吗?

谢谢!

import numpy as np
import cv2
from firebase import firebase
import time
ha=1
new_users=[{"green":ha}]
 
db_url = 'https://autocar-3885c-default-rtdb.firebaseio.com/'
fdb = firebase.FirebaseApplication(db_url, None)
fdb.post("/green",new_users)
red_lower = np.array([-10,100,100])
red_upper = np.array([10,255,255])#这里是设置颜色
#if red color ha=1
#if green color ha=0
#print(format(red_lower))
green_lower = np.array([35,43,46])
green_upper = np.array([77,255,255])
 
cap = cv2.VideoCapture(0)
 
cap.set(3, 320)
cap.set(4, 240)
 
while 1:
   ret, frame = cap.read()
   frame = cv2.GaussianBlur(frame, (3, 3), 0)
   hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
   red_mask = cv2.inRange(hsv, red_lower, red_upper)
   green_mask = cv2.inRange(hsv, green_lower, green_upper)
   mask = cv2.bitwise_or(red_mask, green_mask)
 
   # 图像学膨胀腐蚀
   mask = cv2.erode(mask, None, iterations=2)
   mask = cv2.GaussianBlur(mask, (3, 3), 0)
   res = cv2.bitwise_and(frame, frame, mask=mask)
   # 寻找轮廓并绘制轮廓
   cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
 
   if len(cnts) > 0:
       # 寻找面积最大的轮廓并画出其最小外接圆
       cnt = max(cnts, key=cv2.contourArea)
       (x, y), radius = cv2.minEnclosingCircle(cnt)
       cv2.circle(frame, (int(x), int(y)), int(radius), (255, 0, 255), 2)
       # 找到物体的位置坐标,获得颜色物体的位置,可以来控制小车的转向
       #print(int(x), int(y))
   else:
       pass
   cv2.imshow('frame', frame)
   cv2.imshow('mask', mask)
   cv2.imshow('res', res)
 
   if cv2.waitKey(5) & 0xFF == 27:
       break
cap.release()
cv2.destroyAllWindows()

这是可能的解决方案之一:

import numpy as np
import cv2


red_lower = np.array([-10, 100, 100])
red_upper = np.array([10, 255, 255])  # 这里是设置颜色
# if red color ha=1
# if green color ha=0
# print(format(red_lower))
green_lower = np.array([35, 43, 46])
green_upper = np.array([77, 255, 255])

cap = cv2.VideoCapture(0)

cap.set(3, 320)
cap.set(4, 240)


def image_true_area(img):
    return np.count_nonzero(img)


out_number = -1
thresh = 200

while 1:
    ret, frame = cap.read()
    frame = cv2.GaussianBlur(frame, (3, 3), 0)
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    red_mask = cv2.inRange(hsv, red_lower, red_upper)
    green_mask = cv2.inRange(hsv, green_lower, green_upper)

    out_number = np.argmax([image_true_area(green_mask), image_true_area(red_mask), thresh])
    out_number = out_number if out_number != 2 else -1

    mask = cv2.bitwise_or(red_mask, green_mask)

    # 图像学膨胀腐蚀
    mask = cv2.erode(mask, None, iterations=2)
    mask = cv2.GaussianBlur(mask, (3, 3), 0)
    res = cv2.bitwise_and(frame, frame, mask=mask)
    # 寻找轮廓并绘制轮廓
    cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]

    if len(cnts) > 0:
        # 寻找面积最大的轮廓并画出其最小外接圆
        cnt = max(cnts, key=cv2.contourArea)
        (x, y), radius = cv2.minEnclosingCircle(cnt)
        cv2.circle(frame, (int(x), int(y)), int(radius), (255, 0, 255), 2)
        # 找到物体的位置坐标,获得颜色物体的位置,可以来控制小车的转向
        # print(int(x), int(y))
    else:
        pass

    cv2.putText(frame, str(out_number), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
    cv2.imshow('frame', frame)
    cv2.imshow('mask', mask)
    cv2.imshow('res', res)

    if cv2.waitKey(5) & 0xFF == 27:
        break
cap.release()
cv2.destroyAllWindows()

这里是称为 image_true_area 的方法,即给定图像上 returns 数量的 true 像素。我创建了一个名为 out_number 的变量,它将显示 0 - 如果是绿色,1 - 如果是红色,- 1 - 如果什么都没有(你可以控制阈值变化 thresh 变量)。然后我将 out_number 变量作为文本放入 frame mat.