python 中的颜色检测
Detection of colour in python
有谁知道如何让我的程序在相机检测到特定颜色时显示?我的程序目前可以检测颜色(并在检测到的颜色周围显示一个方框),但我希望程序 在检测到特定颜色时显示代码.
例如。程序检测到红色时显示 1,检测到绿色时显示 0。
我不确定如何编写程序代码来显示这一点。有人有什么想法吗?
谢谢!
import numpy as np
import cv2
from firebase import firebase
import time
ha=1
new_users=[{"green":ha}]
db_url = 'https://autocar-3885c-default-rtdb.firebaseio.com/'
fdb = firebase.FirebaseApplication(db_url, None)
fdb.post("/green",new_users)
red_lower = np.array([-10,100,100])
red_upper = np.array([10,255,255])#这里是设置颜色
#if red color ha=1
#if green color ha=0
#print(format(red_lower))
green_lower = np.array([35,43,46])
green_upper = np.array([77,255,255])
cap = cv2.VideoCapture(0)
cap.set(3, 320)
cap.set(4, 240)
while 1:
ret, frame = cap.read()
frame = cv2.GaussianBlur(frame, (3, 3), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
red_mask = cv2.inRange(hsv, red_lower, red_upper)
green_mask = cv2.inRange(hsv, green_lower, green_upper)
mask = cv2.bitwise_or(red_mask, green_mask)
# 图像学膨胀腐蚀
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.GaussianBlur(mask, (3, 3), 0)
res = cv2.bitwise_and(frame, frame, mask=mask)
# 寻找轮廓并绘制轮廓
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
if len(cnts) > 0:
# 寻找面积最大的轮廓并画出其最小外接圆
cnt = max(cnts, key=cv2.contourArea)
(x, y), radius = cv2.minEnclosingCircle(cnt)
cv2.circle(frame, (int(x), int(y)), int(radius), (255, 0, 255), 2)
# 找到物体的位置坐标,获得颜色物体的位置,可以来控制小车的转向
#print(int(x), int(y))
else:
pass
cv2.imshow('frame', frame)
cv2.imshow('mask', mask)
cv2.imshow('res', res)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
cv2.destroyAllWindows()
这是可能的解决方案之一:
import numpy as np
import cv2
red_lower = np.array([-10, 100, 100])
red_upper = np.array([10, 255, 255]) # 这里是设置颜色
# if red color ha=1
# if green color ha=0
# print(format(red_lower))
green_lower = np.array([35, 43, 46])
green_upper = np.array([77, 255, 255])
cap = cv2.VideoCapture(0)
cap.set(3, 320)
cap.set(4, 240)
def image_true_area(img):
return np.count_nonzero(img)
out_number = -1
thresh = 200
while 1:
ret, frame = cap.read()
frame = cv2.GaussianBlur(frame, (3, 3), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
red_mask = cv2.inRange(hsv, red_lower, red_upper)
green_mask = cv2.inRange(hsv, green_lower, green_upper)
out_number = np.argmax([image_true_area(green_mask), image_true_area(red_mask), thresh])
out_number = out_number if out_number != 2 else -1
mask = cv2.bitwise_or(red_mask, green_mask)
# 图像学膨胀腐蚀
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.GaussianBlur(mask, (3, 3), 0)
res = cv2.bitwise_and(frame, frame, mask=mask)
# 寻找轮廓并绘制轮廓
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
if len(cnts) > 0:
# 寻找面积最大的轮廓并画出其最小外接圆
cnt = max(cnts, key=cv2.contourArea)
(x, y), radius = cv2.minEnclosingCircle(cnt)
cv2.circle(frame, (int(x), int(y)), int(radius), (255, 0, 255), 2)
# 找到物体的位置坐标,获得颜色物体的位置,可以来控制小车的转向
# print(int(x), int(y))
else:
pass
cv2.putText(frame, str(out_number), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
cv2.imshow('frame', frame)
cv2.imshow('mask', mask)
cv2.imshow('res', res)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
cv2.destroyAllWindows()
这里是称为 image_true_area
的方法,即给定图像上 returns 数量的 true 像素。我创建了一个名为 out_number
的变量,它将显示 0 - 如果是绿色,1 - 如果是红色,- 1 - 如果什么都没有(你可以控制阈值变化 thresh
变量)。然后我将 out_number
变量作为文本放入 frame
mat.
有谁知道如何让我的程序在相机检测到特定颜色时显示?我的程序目前可以检测颜色(并在检测到的颜色周围显示一个方框),但我希望程序 在检测到特定颜色时显示代码.
例如。程序检测到红色时显示 1,检测到绿色时显示 0。
我不确定如何编写程序代码来显示这一点。有人有什么想法吗?
谢谢!
import numpy as np
import cv2
from firebase import firebase
import time
ha=1
new_users=[{"green":ha}]
db_url = 'https://autocar-3885c-default-rtdb.firebaseio.com/'
fdb = firebase.FirebaseApplication(db_url, None)
fdb.post("/green",new_users)
red_lower = np.array([-10,100,100])
red_upper = np.array([10,255,255])#这里是设置颜色
#if red color ha=1
#if green color ha=0
#print(format(red_lower))
green_lower = np.array([35,43,46])
green_upper = np.array([77,255,255])
cap = cv2.VideoCapture(0)
cap.set(3, 320)
cap.set(4, 240)
while 1:
ret, frame = cap.read()
frame = cv2.GaussianBlur(frame, (3, 3), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
red_mask = cv2.inRange(hsv, red_lower, red_upper)
green_mask = cv2.inRange(hsv, green_lower, green_upper)
mask = cv2.bitwise_or(red_mask, green_mask)
# 图像学膨胀腐蚀
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.GaussianBlur(mask, (3, 3), 0)
res = cv2.bitwise_and(frame, frame, mask=mask)
# 寻找轮廓并绘制轮廓
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
if len(cnts) > 0:
# 寻找面积最大的轮廓并画出其最小外接圆
cnt = max(cnts, key=cv2.contourArea)
(x, y), radius = cv2.minEnclosingCircle(cnt)
cv2.circle(frame, (int(x), int(y)), int(radius), (255, 0, 255), 2)
# 找到物体的位置坐标,获得颜色物体的位置,可以来控制小车的转向
#print(int(x), int(y))
else:
pass
cv2.imshow('frame', frame)
cv2.imshow('mask', mask)
cv2.imshow('res', res)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
cv2.destroyAllWindows()
这是可能的解决方案之一:
import numpy as np
import cv2
red_lower = np.array([-10, 100, 100])
red_upper = np.array([10, 255, 255]) # 这里是设置颜色
# if red color ha=1
# if green color ha=0
# print(format(red_lower))
green_lower = np.array([35, 43, 46])
green_upper = np.array([77, 255, 255])
cap = cv2.VideoCapture(0)
cap.set(3, 320)
cap.set(4, 240)
def image_true_area(img):
return np.count_nonzero(img)
out_number = -1
thresh = 200
while 1:
ret, frame = cap.read()
frame = cv2.GaussianBlur(frame, (3, 3), 0)
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
red_mask = cv2.inRange(hsv, red_lower, red_upper)
green_mask = cv2.inRange(hsv, green_lower, green_upper)
out_number = np.argmax([image_true_area(green_mask), image_true_area(red_mask), thresh])
out_number = out_number if out_number != 2 else -1
mask = cv2.bitwise_or(red_mask, green_mask)
# 图像学膨胀腐蚀
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.GaussianBlur(mask, (3, 3), 0)
res = cv2.bitwise_and(frame, frame, mask=mask)
# 寻找轮廓并绘制轮廓
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
if len(cnts) > 0:
# 寻找面积最大的轮廓并画出其最小外接圆
cnt = max(cnts, key=cv2.contourArea)
(x, y), radius = cv2.minEnclosingCircle(cnt)
cv2.circle(frame, (int(x), int(y)), int(radius), (255, 0, 255), 2)
# 找到物体的位置坐标,获得颜色物体的位置,可以来控制小车的转向
# print(int(x), int(y))
else:
pass
cv2.putText(frame, str(out_number), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
cv2.imshow('frame', frame)
cv2.imshow('mask', mask)
cv2.imshow('res', res)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
cv2.destroyAllWindows()
这里是称为 image_true_area
的方法,即给定图像上 returns 数量的 true 像素。我创建了一个名为 out_number
的变量,它将显示 0 - 如果是绿色,1 - 如果是红色,- 1 - 如果什么都没有(你可以控制阈值变化 thresh
变量)。然后我将 out_number
变量作为文本放入 frame
mat.