如何更改 Matplotlib 条形图上 x 轴标签上显示的单位
How do I change the units shown on the x-axis labels on a Matplotlib bar chart
我正在努力使收入的 x 轴上的刻度线将价值显示为百万分之一,而不是现在的一亿分之一。我似乎无法弄清楚如何做到这一点。我的代码和生成的条形图如下。
import numpy as np
import pandas as pd
import matplotlib.ticker as plticker
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import display
from pandas import Series
%matplotlib inline
# Define Figure Size
fig, ax = plt.subplots(figsize=(25,25))
# Get the average vote_average for each genre
average_revenue = df2.groupby('release_year')['revenue_adj'].mean()
# Find positions of y ticks
y_pos = np.arange(len(df2['release_year'].unique()))
# Set up Bar Chart
ax.set_yticks(y_pos)
ax.set_yticklabels(sorted(df2['release_year'].unique()))
ax.set_xlabel('Revenue in Millions', fontsize=16)
ax.set_ylabel('Release Year', fontsize=16)
ax.set_title('Revenue by Release Year', fontsize=20)
# Set Size of X and Y labels
plt.rc('xtick', labelsize=14)
plt.rc('ytick', labelsize=14)
# Put Values next to Each Bar
for i, v in enumerate(average_revenue):
a = v/1000000
ax.text(v, i, ('$' + str(round(a,2)) + 'M'), color='blue')
ax.invert_yaxis() # labels read top-to-bottom
# Draw Bar Chart
ax.barh(y_pos, average_revenue, align='center', color='green', ecolor='black')
目前,数据以个位显示,而不是数百万或数亿。注意图右侧的 1e8
。您可以通过将输入除以一百万来绘制以百万为单位的值:
ax.barh(y_pos, average_revenue * 1e-6, ...)
或者,您可以这样调整 formatter on the x-axis if you prefer not to alter the data. For example, you could use a FuncFormatter
:
from matplotlib.ticker import FuncFormatter
ax.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: f'{x * 1e-6:0.1f}'))
我正在努力使收入的 x 轴上的刻度线将价值显示为百万分之一,而不是现在的一亿分之一。我似乎无法弄清楚如何做到这一点。我的代码和生成的条形图如下。
import numpy as np
import pandas as pd
import matplotlib.ticker as plticker
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import display
from pandas import Series
%matplotlib inline
# Define Figure Size
fig, ax = plt.subplots(figsize=(25,25))
# Get the average vote_average for each genre
average_revenue = df2.groupby('release_year')['revenue_adj'].mean()
# Find positions of y ticks
y_pos = np.arange(len(df2['release_year'].unique()))
# Set up Bar Chart
ax.set_yticks(y_pos)
ax.set_yticklabels(sorted(df2['release_year'].unique()))
ax.set_xlabel('Revenue in Millions', fontsize=16)
ax.set_ylabel('Release Year', fontsize=16)
ax.set_title('Revenue by Release Year', fontsize=20)
# Set Size of X and Y labels
plt.rc('xtick', labelsize=14)
plt.rc('ytick', labelsize=14)
# Put Values next to Each Bar
for i, v in enumerate(average_revenue):
a = v/1000000
ax.text(v, i, ('$' + str(round(a,2)) + 'M'), color='blue')
ax.invert_yaxis() # labels read top-to-bottom
# Draw Bar Chart
ax.barh(y_pos, average_revenue, align='center', color='green', ecolor='black')
目前,数据以个位显示,而不是数百万或数亿。注意图右侧的 1e8
。您可以通过将输入除以一百万来绘制以百万为单位的值:
ax.barh(y_pos, average_revenue * 1e-6, ...)
或者,您可以这样调整 formatter on the x-axis if you prefer not to alter the data. For example, you could use a FuncFormatter
:
from matplotlib.ticker import FuncFormatter
ax.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: f'{x * 1e-6:0.1f}'))