使用DQN求解最短路径

using DQN to solve shortest path

我正在尝试了解 DQN 是否可以解决最短路径算法 所以我有这个 Dataframe,其中包含一个 source,它有 nodes idend 代表目的地,也有 nodes id,以及代表边缘距离的权重和然后我将数据框转换为图论如下

DataFrame

    source  end weight
0   688615041   208456626   15.653688122127072
1   688615041   1799221665  10.092266065922756
2   1799221657  1799221660  8.673942902872051
3   1799221660  1799221665  15.282152665774992
4   1799221660  2003461246  25.85307821157314
5   1799221660  299832604   75.99884525624508
6   299832606   2003461227  4.510148061854331
7   299832606   2003461246  10.954119220974723
8   299832606   2364408910  4.903114362426424
9   1731824802  2003461235  6.812335798968233
10  1799221677  208456626   8.308567154008992
11  208456626   2003461246  14.56512909988425
12  208456626   1250468692  16.416527267975034
13  1011881546  1250468696  12.209773608913697
14  1011881546  2003461246  7.477102764665149
15  2364408910  1130166767  9.780352545373274
16  2364408910  2003461246  6.660771089602594
17  2364408910  2003461237  3.125301826317477
18  2364408911  2003461240  3.836966849565568
19  2364408911  2003461246  6.137847950353395
20  2364408911  2003461247  7.399469477211698
21  2364408911  2003461237  3.90876793066916
22  1250468692  1250468696  8.474825189804282
23  1250468701  2003461247  4.539111170687284
24  2003461235  2003461246  12.400601105777394
25  2003461246  2003461247  12.437602668573737

图表看起来像这样

pos = nx.spring_layout(g)
edge_labels = nx.get_edge_attributes(g, 'weight')
nx.draw(g, pos, node_size=100)
nx.draw_networkx_edge_labels(g, pos, edge_labels, font_size=8)
nx.draw_networkx_labels(g, pos, font_size=10)
plt.title("Syntethic representation of the City")
plt.show()
print('Total number of Nodes: '+str(len(g.nodes)))

graph

现在我使用固定状态的DQN,从节点号1130166767作为开始,到节点号1731824802作为目标。

这是我的全部代码

class Network(nn.Module):
  def __init__(self,input_dim,n_action):
    super(Network,self).__init__()
    self.f1=nn.Linear(input_dim,128)
    self.f2=nn.Linear(128,64)
    self.f3=nn.Linear(64,32)
    self.f4=nn.Linear(32,n_action)
    #self.optimizer=optim.Adam(self.parameters(),lr=lr)
    #self.loss=nn.MSELoss()
    self.device=T.device('cuda' if T.cuda.is_available() else 'cpu')
    self.to(self.device)

    
      def forward(self,x):
        x=F.relu(self.f1(x))
        x=F.relu(self.f2(x))
        x=F.relu(self.f3(x))
        x=self.f4(x)
        return x
    
      def act(self,obs):
        #state=T.tensor(obs).to(device)
        state=obs.to(self.device)
        actions=self.forward(state)
        action=T.argmax(actions).item()
    
        return action

device=T.device('cuda' if T.cuda.is_available() else 'cpu')
print(device)

num_states = len(g.nodes)*1
### if we need to train a specific set of nodes for ex 10 we *10
num_actions = len(g.nodes)
print("Expected number of States are: "+str(num_states))
print("Expected number of action are: "+str(num_actions))

#num_action*2=when we would like to convert the state into onehotvector we need to concatinate the two vector 22+22
online=Network(num_actions*2,num_actions)
target=Network(num_actions*2,num_actions)
target.load_state_dict(online.state_dict())
optimizer=T.optim.Adam(online.parameters(),lr=5e-4)

#create a dictionary that have encoded index for each node
#to solve this isssu
#reset()=476562122273
#number of state < 476562122273
enc_node={}
dec_node={}
for index,nd in enumerate(g.nodes):
  enc_node[nd]=index
  dec_node[index]=nd

def wayenc(current_node,new_node,type=1):
  #encoded
  if type==1: #distance
    if new_node in g[current_node]:
      rw=g[current_node][new_node]['weight']*-1
      return rw,True
    rw=-5000
    return rw,False

def rw_function(current,action):
  #current_node
  #new_node
  beta=1 #between 1 and 0
  current=dec_node[current]
  new_node=dec_node[action]
  rw0,link=wayenc(current,new_node)
  rw1=0
  frw=rw0*beta+(1-beta)*rw1


  return frw,link

def state_enc(dst, end,n=len(g.nodes)):
    return dst+n*end

def state_dec(state,n=len(g.nodes)):
    dst = state%n
    end = (state-dst)/n
    return dst, int(end)

def step(state,action):
    done=False    
    current_node , end = state_dec(state)

    new_state = state_enc(action,end)


    rw,link=rw_function(current_node,action)

    if not link:
        new_state = state
        return new_state,rw,False  

    elif action == end:
        rw = 10000 #500*12
        done=True
      
    return new_state,rw,done

def reset():
  state=state_enc(enc_node[1130166767],enc_node[1731824802])
  return state

def state_to_vector(current_node,end_node):
  n=len(g.nodes)
  source_state_zeros=[0.]*n
  source_state_zeros[current_node]=1

  end_state_zeros=[0.]*n
  end_state_zeros[end_node]=1.
  vector=source_state_zeros+end_state_zeros
  return vector
    

#return a list of list converted from state to vectors
def list_of_vecotrs(new_obses_t):
  list_new_obss_t=new_obses_t.tolist()
  #convert to integer
  list_new_obss_t=[int(v) for v in list_new_obss_t]
  vector_list=[]
  for state in list_new_obss_t:
    s,f=state_dec(state)
    vector=state_to_vector(s,f)
    vector_list.append(vector)
  return vector_list

#fill the replay buffer
#replay_buffer=[]
rew_buffer=[0]
penalties=[]
episode_reward=0.0
batch_size=num_actions*2
buffer_size=100000
min_replay_size=int(buffer_size*0.20)
target_update_freq=1000
flag=0
action_list=np.arange(0,len(g.nodes)).tolist()
replay_buffer=deque(maxlen=buffer_size)


#populate the experience network 
obs=reset()
#obs,end=state_dec(start,len(g.nodes))
for _ in tqdm(range(min_replay_size)):
  action=np.random.choice(action_list)
  new_obs,rew,done=step(obs,action)
  transition=(obs,action,rew,done,new_obs)
  replay_buffer.append(transition)
  obs=new_obs
  if done:
    obs=reset()

#main training loop
obs=reset()
episodes=100000
start=1
end=0.1
decay=episodes
gamma=0.99
epsilon=0.5



gamma_list=[]
mean_reward=[]
done_location=[]
loss_list=[]
number_of_episodes=[]
stat_dict={'episodes':[],'epsilon':[],'explore_exploit':[],'time':[]}


for i in tqdm(range(episodes)):
  itr=0
  #epsilon=np.interp(i,[0,decay],[start,end])
  #gamma=np.interp(i,[0,decay],[start,end])
  epsilon=np.exp(-i/(episodes/3))
  rnd_sample=random.random()

  stat_dict['episodes'].append(i)
  stat_dict['epsilon'].append(epsilon)

  #choose an action
  if rnd_sample <=epsilon:
    action=np.random.choice(action_list)
    stat_dict['explore_exploit'].append('explore')

  else:
    source,end=state_dec(obs)
    v_obs=state_to_vector(source,end)
    t_obs=T.tensor(v_obs)
    action=online.act(t_obs)
    stat_dict['explore_exploit'].append('exploit')

  #fill transition and append to replay buffer

  
  new_obs,rew,done=step(obs,action)

  transition=(obs,action,rew,done,new_obs)
  replay_buffer.append(transition)
  obs=new_obs
  episode_reward+=rew


  if done:
    obs=reset()
    rew_buffer.append(episode_reward)
    episode_reward=0.0
    done_location.append(i)


  #start gradient step

  transitions=random.sample(replay_buffer,batch_size)

  obses=np.asarray([t[0] for t in transitions])
  actions=np.asarray([t[1] for t in transitions])
  rews=np.asarray([t[2] for t in transitions])
  dones=np.asarray([t[3] for t in transitions])
  new_obses=np.asarray([t[4] for t in transitions])


  obses_t=T.as_tensor(obses,dtype=T.float32).to(device)
  actions_t=T.as_tensor(actions,dtype=T.int64).to(device).unsqueeze(-1)
  rews_t=T.as_tensor(rews,dtype=T.float32).to(device)
  dones_t=T.as_tensor(dones,dtype=T.float32).to(device)
  new_obses_t=T.as_tensor(new_obses,dtype=T.float32).to(device)

  
  list_new_obses_t=T.tensor(list_of_vecotrs(new_obses_t)).to(device)
  target_q_values=target(list_new_obses_t)##


  max_target_q_values=target_q_values.max(dim=1,keepdim=False)[0]
  targets=rews_t+gamma*(1-dones_t)*max_target_q_values

  
  list_obses_t=T.tensor(list_of_vecotrs(obses_t)).to(device)
  q_values=online(list_obses_t)
  action_q_values=T.gather(input=q_values,dim=1,index=actions_t)


  
  #warning UserWarning: Using a target size (torch.Size([24, 24])) that is different to the input size (torch.Size([24, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.
  targets=targets.unsqueeze(-1)
  loss=nn.functional.mse_loss(action_q_values,targets)
  #loss=rmsle(action_q_values,targets)
  loss_list.append(loss.item())

  optimizer.zero_grad()
  loss.backward()
  optimizer.step()

  #plot
  mean_reward.append(np.mean(rew_buffer))
  number_of_episodes.append(i)
  gamma_list.append(gamma)
  dec = {'number_of_episodes':number_of_episodes,'mean_reward':mean_reward,'gamma':gamma_list}
  #clear_output(wait=True)
  #sns.lineplot(data=dec, x="number_of_episodes", y="mean_reward")
  #plt.show()

  

  if i % target_update_freq==0:
    target.load_state_dict(online.state_dict())
  if i % 1000 ==0:
    print('step',i,'avg rew',round(np.mean(rew_buffer),2))
    pass

现在如果你能从photos

看到

无论是奖励增加还是损失减少,我都尝试了以下

  1. 增加和减少学习率

  2. 改变 target_update_freq 从 100 1000 1000

  3. 我尝试将状态表示从 Onehotvector 更改为 [state, end] 并将其成对发送。

  4. 我尝试将损失函数从 mse_loss、smooth_l1、...等

  5. 我试着增加集数

  6. 向 NN 网络添加另一层 7.changing epsilon 的衰减如何线性,指数

这些解决方案大部分来自 Stacked 上的问题,但对我来说没有任何用处

如何提高性能?还是在另一个病房?如何增加奖励?

看来你的问题只需要调整参数

  1. 我把你的学习率改成0.02
  2. 我更改了发送到 NN 的状态的维度
class Network(nn.Module):
  def __init__(self,input_dim,n_action):
    super(Network,self).__init__()
    self.f1=nn.Linear(input_dim,128)
    self.f2=nn.Linear(128,64)
    self.f3=nn.Linear(64,32)
    self.f4=nn.Linear(32,n_action)
    #self.optimizer=optim.Adam(self.parameters(),lr=lr)
    #self.loss=nn.MSELoss()
    self.device=T.device('cuda' if T.cuda.is_available() else 'cpu')
    self.to(self.device)

  def forward(self,x):
    x=F.relu(self.f1(x))
    x=F.relu(self.f2(x))
    x=F.relu(self.f3(x))
    x=self.f4(x)
    return x

  def act(self,obs):
    #state=T.tensor(obs).to(device)
    state=obs.to(self.device)
    actions=self.forward(state)
    action=T.argmax(actions).item()

    return action

device=T.device('cuda' if T.cuda.is_available() else 'cpu')
print(device)
num_states = len(g.nodes)**2
num_actions = len(g.nodes)
online=Network(num_actions*2,num_actions)
target=Network(num_actions*2,num_actions)
target.load_state_dict(online.state_dict())
optimizer=T.optim.Adam(online.parameters(),lr=1e-2)
enc_node={}
dec_node={}
for index,nd in enumerate(g.nodes):
  enc_node[nd]=index
  dec_node[index]=nd

def wayenc(current_node,new_node,type=1):
  #encoded
  if type==1: #distance
    if new_node in g[current_node]:
      rw=g[current_node][new_node]['weight']*-1
      return rw,True
    rw=-1000
    return rw,False
def rw_function(current,action):
  beta=1 
  current=dec_node[current]
  new_node=dec_node[action]
  rw0,link=wayenc(current,new_node)
  rw1=0
  frw=rw0*beta+(1-beta)*rw1


  return frw,link

def state_enc(dst, end,n=len(g.nodes)):
    return dst+n*end

def state_dec(state,n=len(g.nodes)):
    dst = state%n
    end = (state-dst)/n
    return dst, int(end)

def step(state,action):
    done=False    
    current_node , end = state_dec(state)

    new_state = state_enc(action,end)


    rw,link=rw_function(current_node,action)

    if not link:
        new_state = state
        return new_state,rw,False  

    elif action == end:
        rw = 10000
        done=True
      
    return new_state,rw,done

def reset():
  state=state_enc(enc_node[1130166767],enc_node[1731824802])
  return state

def state_to_vector(current_node,end_node):
  n=len(g.nodes)
  source_state_zeros=[0.]*n
  source_state_zeros[current_node]=1

  end_state_zeros=[0.]*n
  end_state_zeros[end_node]=1.
  vector=source_state_zeros+end_state_zeros
  return vector


    

#return a list of list converted from state to vectors
def list_of_vecotrs(new_obses_t):
  list_new_obss_t=new_obses_t.tolist()
  #convert to integer
  list_new_obss_t=[int(v) for v in list_new_obss_t]
  vector_list=[]
  for state in list_new_obss_t:
    s,f=state_dec(state)
    vector=state_to_vector(s,f)
    vector_list.append(vector)
  return vector_list

  #replay_buffer=[]
rew_buffer=[0]
penalties=[]
episode_reward=0.0
#batch_size=num_actions*2
batch_size=32
buffer_size=50000 
min_replay_size=int(buffer_size*0.25)

target_update_freq=1000
flag=0
action_list=np.arange(0,len(g.nodes)).tolist()
replay_buffer=deque(maxlen=min_replay_size)


#populate the experience network 
obs=reset()
#obs,end=state_dec(start,len(g.nodes))
for _ in tqdm(range(min_replay_size)):
  action=np.random.choice(action_list)
  new_obs,rew,done=step(obs,action)
  transition=(obs,action,rew,done,new_obs)
  replay_buffer.append(transition)
  obs=new_obs
  if done:
    obs=reset()

#main training loop
obs=reset()
episodes=70000
start=1
end=0.1
decay=episodes
gamma=0.99
epsilon=0.5



gamma_list=[]
mean_reward=[]
done_location=[]
loss_list=[]
number_of_episodes=[]
stat_dict={'episodes':[],'epsilon':[],'explore_exploit':[],'time':[]}


for i in tqdm(range(episodes)):
  itr=0

  epsilon=np.exp(-i/(episodes/2))
  rnd_sample=random.random()

  stat_dict['episodes'].append(i)
  stat_dict['epsilon'].append(epsilon)

  if rnd_sample <=epsilon:
    action=np.random.choice(action_list)
    stat_dict['explore_exploit'].append('explore')

  else:
    source,end=state_dec(obs)
    v_obs=state_to_vector(source,end)
    t_obs=T.tensor([v_obs])
    action=online.act(t_obs)
    stat_dict['explore_exploit'].append('exploit')


  
  new_obs,rew,done=step(obs,action)

  transition=(obs,action,rew,done,new_obs)
  replay_buffer.append(transition)
  obs=new_obs
  episode_reward+=rew


  if done:
    obs=reset()
    rew_buffer.append(episode_reward)
    episode_reward=0.0
    done_location.append(i)


  batch_size=32
  transitions=random.sample(replay_buffer,batch_size)

  obses=np.asarray([t[0] for t in transitions])
  actions=np.asarray([t[1] for t in transitions])
  rews=np.asarray([t[2] for t in transitions])
  dones=np.asarray([t[3] for t in transitions])
  new_obses=np.asarray([t[4] for t in transitions])


  obses_t=T.as_tensor(obses,dtype=T.float32).to(device)
  actions_t=T.as_tensor(actions,dtype=T.int64).to(device).unsqueeze(-1)
  rews_t=T.as_tensor(rews,dtype=T.float32).to(device)
  dones_t=T.as_tensor(dones,dtype=T.float32).to(device)
  new_obses_t=T.as_tensor(new_obses,dtype=T.float32).to(device)

  
  list_new_obses_t=T.tensor(list_of_vecotrs(new_obses_t)).to(device)
  target_q_values=target(list_new_obses_t)##
  #target_q_values=target(obses_t)


  max_target_q_values=target_q_values.max(dim=1,keepdim=False)[0]
  targets=rews_t+gamma*(1-dones_t)*max_target_q_values
  targets=targets.unsqueeze(-1)
  
  list_obses_t=T.tensor(list_of_vecotrs(obses_t)).to(device)
  q_values=online(list_obses_t)
  #q_values=online(obses_t)
  action_q_values=T.gather(input=q_values,dim=1,index=actions_t)


  
  
  loss=nn.functional.mse_loss(action_q_values,targets)
  loss_list.append(loss.item())

  optimizer.zero_grad()
  loss.backward()
  optimizer.step()

  mean_reward.append(np.mean(rew_buffer))
  number_of_episodes.append(i)
  gamma_list.append(gamma)
  dec = {'number_of_episodes':number_of_episodes,'mean_reward':mean_reward,'gamma':gamma_list}

  

  if i % target_update_freq==0:
    target.load_state_dict(online.state_dict())
  if i % 1000 ==0:
    print('step',i,'avg rew',round(np.mean(rew_buffer),2))
    pass
  if i==5000:
    pass

我做了 运行 这个脚本,它给了我很好的性能改变学习率帮助很大