甲骨文避免浪费加入回来?
Oracle Avoid Wasteful Join Back?
假设我们有三个 table(A、B 和 C),如以下人为示例中所定义,其中 A 和 B 与 C 相关(在其中有外键)。
假设,我们想要来自所有三个 table 的值并断言 A 和 B。
Oracle 一次只能将两个行集连接在一起。
我们得到一个类似于 ((A -> C) -> B) 的连接顺序。
这意味着我们花费 I/O 从 C 获取行,当我们连接回 B(和 B 的谓词)时我们最终丢弃了这些行。
我们怎样才能在 table C 上避免这种“浪费”I/O?
星形变换很棒,但只有在优化器确定成本证明星形变换合理时才会启动。
也就是说,我们不保证能得到星型转换。
这可能看起来像人们想要的,但优化器正在获得较差的估计行(请参见下面的示例 - 关闭 10 倍)。
因此,优化选择不使用星形变换,否则它会被证明是有益的。
我们无法像 from 那样手动编写星型转换查询,因为 SQL 是由 BI 报告工具生成的。
也许我的问题是如何“强制”优化器使用星型转换,而无需手动以该形式编写查询?
或者,也许,我的问题是如何使估计的行数更好,这样我们就可以更加确信优化器将调用星型转换?
或者,也许(很有可能)还有其他一些我还不知道的很酷的 Oracle 特性可能会提供解决方案。
Oracle 12.1 企业版(但在几个月内移动到 19.1)
提前致谢。
drop table join_back_c;
drop table join_back_a;
drop table join_back_b;
create table join_back_a
as
with "D" as (select 1 from dual connect by level <= 1000)
select rownum a_code
, rpad('x',100) a_name
from "D"
;
create unique index IX_join_back_a_code on join_back_a(a_code);
alter table join_back_a add constraint PK_dan_join_back_a primary key (a_code);
create table join_back_b
as
with "D" as (select /*+ materialize */ 1 from dual connect by level <= 320)
select rownum b_id
, mod(rownum, 10) b_group
from "D", "D"
where rownum <= 100000 --100k
;
create unique index IX_join_back_b_id on join_back_b(b_id);
create index IX_join_back_b_group on join_back_b(b_group);
alter table join_back_b add constraint PK_dan_join_back_b primary key (b_id);
create table join_back_c
as
with "D" as (select /*+ materialize */ level from dual connect by level <= 3200)
select rownum c_id
, trunc(dbms_random.value(1, 1000)) a_code --table a FK
, trunc(dbms_random.value(1, 100000)) b_id --table b FK
from "D", "D"
where rownum <= 1000000 -- 1M
;
create index IR_join_back_c_a_code on join_back_c(a_code);
create index IR_join_back_c_b_id on join_back_c(b_id);
exec dbms_stats.gather_table_stats('DATA','JOIN_BACK_C');
exec dbms_stats.gather_table_stats('DATA','JOIN_BACK_A');
exec dbms_stats.gather_table_stats('DATA','JOIN_BACK_B');
select *
from join_back_a "A"
join join_back_c "C"
on A.a_code = C.a_code
join join_back_b "B"
on B.b_id = C.b_id
where a.a_code = 1
and b.b_group = 1
;
--------------------------------------------------------------------------------------------------------
| id | Operation | name | rows | Bytes | cost (%CPU)| time |
--------------------------------------------------------------------------------------------------------
| 0 | select statement | | 1001 | 124K| 983 (2)| 00:00:01 |
|* 1 | hash join | | 1001 | 124K| 983 (2)| 00:00:01 |
| 2 | nested LOOPS | | | | | |
| 3 | nested LOOPS | | 1001 | 116K| 839 (1)| 00:00:01 |
| 4 | table access by index ROWID| JOIN_BACK_A | 1 | 105 | 2 (0)| 00:00:01 |
|* 5 | index range scan | IX_JOIN_BACK_A_CODE | 1 | | 1 (0)| 00:00:01 |
|* 6 | index range scan | IR_JOIN_BACK_C_A_CODE | 1001 | | 4 (0)| 00:00:01 |
| 7 | table access by index ROWID | JOIN_BACK_C | 1001 | 14014 | 837 (1)| 00:00:01 |
|* 8 | table access full | JOIN_BACK_B | 10000 | 80000 | 143 (5)| 00:00:01 |
--------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - access("B"."B_ID"="C"."B_ID")
5 - access("A"."A_CODE"=1)
6 - access("C"."A_CODE"=1)
8 - filter("B"."B_GROUP"=1)
select count(*)
from join_back_a "A"
join join_back_c "C"
on A.a_code = C.a_code
join join_back_b "B"
on B.b_id = C.b_id
where a.a_code = 1
and b.b_group = 1
; -- about 100 rows
加入顺序:((A -> C) -> B)
A -> C(第 3 步)准确估计行数约为 1k。
第 8 步的估计也很准确。
但是,此返回 B 的连接(步骤 1)只会进一步减少步骤 3 中的 1k 行集。在这种情况下,B 的谓词将 (A -> C) 行集减少了 1/10 .
这意味着我们从 C 访问了 1000 行,只是为了丢弃其中的 900 行。
select /*+ star_transformation */
*
from join_back_a "A"
join join_back_c "C"
on A.a_code = C.a_code
join join_back_b "B"
on B.b_id = C.b_id
where a.a_code = 1
and b.b_group = 1
;
--------------------------------------------------------------------------------------------------------
| id | Operation | name | rows | Bytes | cost (%CPU)| time |
--------------------------------------------------------------------------------------------------------
| 0 | select statement | | 1001 | 124K| 983 (2)| 00:00:01 |
|* 1 | hash join | | 1001 | 124K| 983 (2)| 00:00:01 |
| 2 | nested LOOPS | | | | | |
| 3 | nested LOOPS | | 1001 | 116K| 839 (1)| 00:00:01 |
| 4 | table access by index ROWID| JOIN_BACK_A | 1 | 105 | 2 (0)| 00:00:01 |
|* 5 | index range scan | IX_JOIN_BACK_A_CODE | 1 | | 1 (0)| 00:00:01 |
|* 6 | index range scan | IR_JOIN_BACK_C_A_CODE | 1001 | | 4 (0)| 00:00:01 |
| 7 | table access by index ROWID | JOIN_BACK_C | 1001 | 14014 | 837 (1)| 00:00:01 |
|* 8 | table access full | JOIN_BACK_B | 10000 | 80000 | 143 (5)| 00:00:01 |
--------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - access("B"."B_ID"="C"."B_ID")
5 - access("A"."A_CODE"=1)
6 - access("C"."A_CODE"=1)
8 - filter("B"."B_GROUP"=1)
我正在寻找更类似于以下内容的执行路径。
尽管下方估计有 1000 万行,但此查询的行数仍保持在 100 左右。
但是,我们无法控制生成到这种程度的SQL。
这就是上面所说的像 from.
这样的星形转换中手动编写查询。
select *
from join_back_a "A"
join join_back_c "C"
on A.a_code = C.a_code
join join_back_b "B"
on B.b_id = C.b_id
where C.rowid in ( select C1.rowid
from join_back_C "C1"
join join_back_a "A1"
on C1.a_code = A1.a_code
where A1.a_code = 1
intersect
select C2.rowid
from join_back_C "C2"
join join_back_b "B1"
on C2.b_id = B1.b_id
where B1.b_group = 1
)
;
---------------------------------------------------------------------------------------------------------------
| id | Operation | name | rows | Bytes |TempSpc| cost (%CPU)| time |
---------------------------------------------------------------------------------------------------------------
| 0 | select statement | | 9928K| 1316M| | 4649 (17)| 00:00:01 |
|* 1 | hash join | | 9928K| 1316M| | 4649 (17)| 00:00:01 |
| 2 | table access full | JOIN_BACK_A | 1000 | 102K| | 16 (0)| 00:00:01 |
|* 3 | hash join | | 9928K| 321M| | 4320 (11)| 00:00:01 |
| 4 | table access full | JOIN_BACK_B | 100K| 781K| | 142 (5)| 00:00:01 |
| 5 | nested LOOPS | | 10M| 248M| | 3858 (3)| 00:00:01 |
| 6 | view | VW_NSO_1 | 1001 | 12012 | | 2855 (4)| 00:00:01 |
| 7 | INTERSECTION | | | | | | |
| 8 | SORT UNIQUE | | 1001 | 18018 | | | |
| 9 | NESTED LOOPS | | 1001 | 18018 | | 5 (0)| 00:00:01 |
|* 10 | INDEX RANGE SCAN | IX_JOIN_BACK_A_CODE | 1 | 4 | | 1 (0)| 00:00:01 |
|* 11 | INDEX RANGE SCAN | IR_JOIN_BACK_C_A_CODE | 1001 | 14014 | | 4 (0)| 00:00:01 |
| 12 | SORT UNIQUE | | 99191 | 2131K| 3120K| | |
|* 13 | HASH JOIN | | 99191 | 2131K| | 1789 (5)| 00:00:01 |
|* 14 | TABLE ACCESS FULL | JOIN_BACK_B | 10000 | 80000 | | 143 (5)| 00:00:01 |
| 15 | INDEX FAST FULL SCAN | IR_JOIN_BACK_C_B_ID | 1000K| 13M| | 1614 (3)| 00:00:01 |
| 16 | TABLE ACCESS BY USER ROWID| JOIN_BACK_C | 10000 | 136K| | 1 (0)| 00:00:01 |
---------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - access("A"."A_CODE"="C"."A_CODE")
3 - access("B"."B_ID"="C"."B_ID")
10 - access("A1"."A_CODE"=1)
11 - access("C1"."A_CODE"=1)
13 - access("C2"."B_ID"="B1"."B_ID")
14 - filter("B1"."B_GROUP"=1)
尝试将 table C 上的两个外键索引制作成位图索引 - 没有成功。此外,尝试了 table C(a_code, b_id) 上的复合索引 - 再次失败。此外,复合索引不是可取的,因为我们的 table C 确实有很多外键(一些代理项和一些自然键)。
星型转换似乎有谓词 select 活跃度的黄金地带,您的谓词要么太 select 活跃,要么 select 不够活跃。
根据 Data Warehousing Guide, section 4.5.2.5 How Oracle Chooses to Use Star Transformation:
If the query requires accessing a large percentage of the rows in the
fact table, it might be better to use a full table scan and not use
the transformations. However, if the constraining predicates on the
dimension tables are sufficiently selective that only a small portion
of the fact table must be retrieved, the plan based on the
transformation will probably be superior.
谓词a.a_code = 1
是主键上的相等条件。读取唯一索引几乎总是与操作一样快,如果可能,Oracle 将始终选择该路径。另一方面,谓词 b.b_group = 1
将 select 10% 的行,这是完整的 table 扫描区域,而不是您想要重复 运行 的操作在子查询中。
在你的例子中,当我注释掉唯一索引和主键时:
--create unique index IX_join_back_a_code on join_back_a(a_code);
--alter table join_back_a add constraint PK_dan_join_back_a primary key (a_code);
并更改 10% selectivity:
, mod(rownum, 10) b_group
0.1% select活性:
, mod(rownum, 1000) b_group
我可以在我的 19c 数据库上进行星型转换:
alter session set star_transformation_enabled=true;
explain plan for
select /*+ star_transformation */ *
from join_back_a "A"
join join_back_c "C"
on A.a_code = C.a_code
join join_back_b "B"
on B.b_id = C.b_id
where a.a_code = 1
and b.b_group = 1;
select * from table(dbms_xplan.display);
Plan hash value: 3923125903
-----------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 153 | 126 (1)| 00:00:01 |
| 1 | TEMP TABLE TRANSFORMATION | | | | | |
| 2 | LOAD AS SELECT (CURSOR DURATION MEMORY)| SYS_TEMP_0FD9D66A0_377EE48 | | | | |
| 3 | TABLE ACCESS BY INDEX ROWID BATCHED | JOIN_BACK_B | 100 | 900 | 101 (0)| 00:00:01 |
|* 4 | INDEX RANGE SCAN | IX_JOIN_BACK_B_GROUP | 100 | | 1 (0)| 00:00:01 |
|* 5 | HASH JOIN | | 1 | 153 | 25 (4)| 00:00:01 |
|* 6 | VIEW | VW_ST_D5F377AC | 1 | 39 | 16 (7)| 00:00:01 |
| 7 | NESTED LOOPS | | 1 | 28 | 14 (8)| 00:00:01 |
| 8 | BITMAP CONVERSION TO ROWIDS | | | 13 | 14 (8)| 00:00:01 |
| 9 | BITMAP AND | | | | | |
| 10 | BITMAP CONVERSION FROM ROWIDS | | | | | |
|* 11 | INDEX RANGE SCAN | IR_JOIN_BACK_C_A_CODE | | | 5 (0)| 00:00:01 |
| 12 | BITMAP MERGE | | | | | |
| 13 | BITMAP KEY ITERATION | | | | | |
| 14 | TABLE ACCESS FULL | SYS_TEMP_0FD9D66A0_377EE48 | 100 | 500 | 2 (0)| 00:00:01 |
| 15 | BITMAP CONVERSION FROM ROWIDS | | | | | |
|* 16 | INDEX RANGE SCAN | IR_JOIN_BACK_C_B_ID | | | 3 (0)| 00:00:01 |
| 17 | TABLE ACCESS BY USER ROWID | JOIN_BACK_C | 1 | 14 | 2 (0)| 00:00:01 |
| 18 | MERGE JOIN CARTESIAN | | 100 | 11400 | 9 (0)| 00:00:01 |
|* 19 | TABLE ACCESS FULL | JOIN_BACK_A | 1 | 105 | 7 (0)| 00:00:01 |
| 20 | BUFFER SORT | | 100 | 900 | 2 (0)| 00:00:01 |
| 21 | TABLE ACCESS FULL | SYS_TEMP_0FD9D66A0_377EE48 | 100 | 900 | 2 (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
4 - access("B"."B_GROUP"=1)
5 - access("C0"="ITEM_2" AND "A"."A_CODE"="ITEM_1")
6 - filter("ITEM_1"=1)
11 - access("C"."A_CODE"=1)
16 - access("C"."B_ID"="C0")
19 - filter("A"."A_CODE"=1)
Note
-----
- star transformation used for this statement
我不确定这个答案是否会帮助您改进查询,但希望它至少可以帮助解释为什么您的查询没有按您想要的方式工作。
除了 Jon Heller 的回答:
On the other hand, the predicate b.b_group = 1 will select 10% of the rows, which is in full table scan territory, and is not an operation you want to run repeatedly in a subquery.
mod(rownum, 10) b_group
不仅提供了 10% 的选择性,而且还意味着在您的测试用例中每个 table 块包含几十个这样的行:
SQL> select count(distinct dbms_rowid.rowid_block_number(rowid)) from join_back_b;
COUNT(DISTINCTDBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID))
---------------------------------------------------
177
SQL> select count(distinct dbms_rowid.rowid_block_number(rowid)) from join_back_b where b_group=1;
COUNT(DISTINCTDBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID))
---------------------------------------------------
177
SQL> select min(cnt), max(cnt), avg(cnt)
2 from (
3 select dbms_rowid.rowid_block_number(rowid) block_n, count(*) cnt
4 from join_back_b
5 where b_group=1
6 group by dbms_rowid.rowid_block_number(rowid)
7 );
MIN(CNT) MAX(CNT) AVG(CNT)
---------- ---------- ----------
49 62 56.4971751
它为我们提供了来自 B 的 10000 行,b.b_id=c.b_id
谓词为我们提供了来自 JOIN_BACK_C
的约 10% 的选择性,这也意味着 JOIN_BACK_C
的每个块包含几十个所需的行:
SQL> select count(distinct dbms_rowid.rowid_block_number(rowid)) from join_back_c;
COUNT(DISTINCTDBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID))
---------------------------------------------------
2597
select min(cnt), max(cnt), avg(cnt), count(distinct block_n)
from (
select dbms_rowid.rowid_block_number(c.rowid) block_n, count(*) cnt
from join_back_b b
join join_back_c c
on b.b_id=c.b_id
where b_group=1
group by dbms_rowid.rowid_block_number(c.rowid)
);
MIN(CNT) MAX(CNT) AVG(CNT) COUNT(DISTINCTBLOCK_N)
---------- ---------- ---------- ----------------------
8 57 38.6334232 2597
此外 join_back_c.a_code=1
也给出了糟糕的选择性 ~ 1/1000 = 随机块中的 1000 行,而这个 table 只包含 ~2500 个块。所以你需要扫描 table 块的 1/2.5 =~ 40%。显然,最好使用多块读取来完成。
但是如果我们 return 解决主要问题:是的,我理解您的问题 - 有时最好将一个行源拆分为 2 个不同的访问路径,而 CBO 通常无法做到这一点。对于这种情况有一种标准方法 - 重写查询并复制行源两次,例如:
稍微修改了测试数据以获得更好的结果selectivity/reduced IO:
create table join_back_b
as
with "D" as (select /*+ materialize */ 1 from dual connect by level <= 320)
select rownum b_id
, mod(rownum, 1000) b_group
from "D", "D"
where rownum <= 100000 --100k
order by b_group
;
和+填充(使行更大):
create table join_back_c
as
with "D" as (select /*+ materialize */ level from dual connect by level <= 3200)
select rownum c_id
, trunc(dbms_random.value(1, 1000)) a_code --table a FK
, trunc(dbms_random.value(1, 100000)) b_id --table b FK
, rpad('x',100,'x') padding
from "D", "D"
where rownum <= 1000000 -- 1M
;
示例:
with
ac as (
select c.rowid rid
,a.*
from join_back_a A
join join_back_c C
on A.a_code = C.a_code
where a.a_code = 1
)
,bc as (
select c.rowid rid
,b.*
from join_back_b B
join join_back_c C
on b.b_id = c.b_id
where b.b_group = 1
)
select--+ no_adaptive_plan NO_ELIMINATE_JOIN(c) no_merge(ac) no_merge(bc)
*
from ac
join bc on ac.rid=bc.rid
join join_back_c C
on bc.rid = c.rowid;
计划:
Plan hash value: 3065703407
-----------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 230 | 209 (0)| 00:00:01 |
| 1 | NESTED LOOPS | | 1 | 230 | 209 (0)| 00:00:01 |
|* 2 | HASH JOIN | | 1 | 115 | 208 (0)| 00:00:01 |
| 3 | VIEW | | 992 | 37696 | 202 (0)| 00:00:01 |
| 4 | NESTED LOOPS | | 992 | 25792 | 202 (0)| 00:00:01 |
| 5 | TABLE ACCESS BY INDEX ROWID BATCHED| JOIN_BACK_B | 100 | 900 | 2 (0)| 00:00:01 |
|* 6 | INDEX RANGE SCAN | IX_JOIN_BACK_B_GROUP | 100 | | 1 (0)| 00:00:01 |
|* 7 | INDEX RANGE SCAN | IR_JOIN_BACK_C_B_ID | 10 | 170 | 2 (0)| 00:00:01 |
| 8 | VIEW | | 1001 | 77077 | 6 (0)| 00:00:01 |
| 9 | NESTED LOOPS | | 1001 | 118K| 6 (0)| 00:00:01 |
| 10 | TABLE ACCESS BY INDEX ROWID | JOIN_BACK_A | 1 | 105 | 2 (0)| 00:00:01 |
|* 11 | INDEX UNIQUE SCAN | IX_JOIN_BACK_A_CODE | 1 | | 1 (0)| 00:00:01 |
|* 12 | INDEX RANGE SCAN | IR_JOIN_BACK_C_A_CODE | 1001 | 16016 | 4 (0)| 00:00:01 |
| 13 | TABLE ACCESS BY USER ROWID | JOIN_BACK_C | 1 | 115 | 1 (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("AC"."RID"="BC"."RID")
6 - access("B"."B_GROUP"=1)
7 - access("B"."B_ID"="C"."B_ID")
11 - access("A"."A_CODE"=1)
12 - access("C"."A_CODE"=1)
假设我们有三个 table(A、B 和 C),如以下人为示例中所定义,其中 A 和 B 与 C 相关(在其中有外键)。 假设,我们想要来自所有三个 table 的值并断言 A 和 B。 Oracle 一次只能将两个行集连接在一起。 我们得到一个类似于 ((A -> C) -> B) 的连接顺序。 这意味着我们花费 I/O 从 C 获取行,当我们连接回 B(和 B 的谓词)时我们最终丢弃了这些行。
我们怎样才能在 table C 上避免这种“浪费”I/O?
星形变换很棒,但只有在优化器确定成本证明星形变换合理时才会启动。 也就是说,我们不保证能得到星型转换。 这可能看起来像人们想要的,但优化器正在获得较差的估计行(请参见下面的示例 - 关闭 10 倍)。 因此,优化选择不使用星形变换,否则它会被证明是有益的。
我们无法像 from 那样手动编写星型转换查询,因为 SQL 是由 BI 报告工具生成的。
也许我的问题是如何“强制”优化器使用星型转换,而无需手动以该形式编写查询? 或者,也许,我的问题是如何使估计的行数更好,这样我们就可以更加确信优化器将调用星型转换? 或者,也许(很有可能)还有其他一些我还不知道的很酷的 Oracle 特性可能会提供解决方案。
Oracle 12.1 企业版(但在几个月内移动到 19.1) 提前致谢。
drop table join_back_c;
drop table join_back_a;
drop table join_back_b;
create table join_back_a
as
with "D" as (select 1 from dual connect by level <= 1000)
select rownum a_code
, rpad('x',100) a_name
from "D"
;
create unique index IX_join_back_a_code on join_back_a(a_code);
alter table join_back_a add constraint PK_dan_join_back_a primary key (a_code);
create table join_back_b
as
with "D" as (select /*+ materialize */ 1 from dual connect by level <= 320)
select rownum b_id
, mod(rownum, 10) b_group
from "D", "D"
where rownum <= 100000 --100k
;
create unique index IX_join_back_b_id on join_back_b(b_id);
create index IX_join_back_b_group on join_back_b(b_group);
alter table join_back_b add constraint PK_dan_join_back_b primary key (b_id);
create table join_back_c
as
with "D" as (select /*+ materialize */ level from dual connect by level <= 3200)
select rownum c_id
, trunc(dbms_random.value(1, 1000)) a_code --table a FK
, trunc(dbms_random.value(1, 100000)) b_id --table b FK
from "D", "D"
where rownum <= 1000000 -- 1M
;
create index IR_join_back_c_a_code on join_back_c(a_code);
create index IR_join_back_c_b_id on join_back_c(b_id);
exec dbms_stats.gather_table_stats('DATA','JOIN_BACK_C');
exec dbms_stats.gather_table_stats('DATA','JOIN_BACK_A');
exec dbms_stats.gather_table_stats('DATA','JOIN_BACK_B');
select *
from join_back_a "A"
join join_back_c "C"
on A.a_code = C.a_code
join join_back_b "B"
on B.b_id = C.b_id
where a.a_code = 1
and b.b_group = 1
;
--------------------------------------------------------------------------------------------------------
| id | Operation | name | rows | Bytes | cost (%CPU)| time |
--------------------------------------------------------------------------------------------------------
| 0 | select statement | | 1001 | 124K| 983 (2)| 00:00:01 |
|* 1 | hash join | | 1001 | 124K| 983 (2)| 00:00:01 |
| 2 | nested LOOPS | | | | | |
| 3 | nested LOOPS | | 1001 | 116K| 839 (1)| 00:00:01 |
| 4 | table access by index ROWID| JOIN_BACK_A | 1 | 105 | 2 (0)| 00:00:01 |
|* 5 | index range scan | IX_JOIN_BACK_A_CODE | 1 | | 1 (0)| 00:00:01 |
|* 6 | index range scan | IR_JOIN_BACK_C_A_CODE | 1001 | | 4 (0)| 00:00:01 |
| 7 | table access by index ROWID | JOIN_BACK_C | 1001 | 14014 | 837 (1)| 00:00:01 |
|* 8 | table access full | JOIN_BACK_B | 10000 | 80000 | 143 (5)| 00:00:01 |
--------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - access("B"."B_ID"="C"."B_ID")
5 - access("A"."A_CODE"=1)
6 - access("C"."A_CODE"=1)
8 - filter("B"."B_GROUP"=1)
select count(*)
from join_back_a "A"
join join_back_c "C"
on A.a_code = C.a_code
join join_back_b "B"
on B.b_id = C.b_id
where a.a_code = 1
and b.b_group = 1
; -- about 100 rows
加入顺序:((A -> C) -> B)
A -> C(第 3 步)准确估计行数约为 1k。
第 8 步的估计也很准确。
但是,此返回 B 的连接(步骤 1)只会进一步减少步骤 3 中的 1k 行集。在这种情况下,B 的谓词将 (A -> C) 行集减少了 1/10 .
这意味着我们从 C 访问了 1000 行,只是为了丢弃其中的 900 行。
select /*+ star_transformation */
*
from join_back_a "A"
join join_back_c "C"
on A.a_code = C.a_code
join join_back_b "B"
on B.b_id = C.b_id
where a.a_code = 1
and b.b_group = 1
;
--------------------------------------------------------------------------------------------------------
| id | Operation | name | rows | Bytes | cost (%CPU)| time |
--------------------------------------------------------------------------------------------------------
| 0 | select statement | | 1001 | 124K| 983 (2)| 00:00:01 |
|* 1 | hash join | | 1001 | 124K| 983 (2)| 00:00:01 |
| 2 | nested LOOPS | | | | | |
| 3 | nested LOOPS | | 1001 | 116K| 839 (1)| 00:00:01 |
| 4 | table access by index ROWID| JOIN_BACK_A | 1 | 105 | 2 (0)| 00:00:01 |
|* 5 | index range scan | IX_JOIN_BACK_A_CODE | 1 | | 1 (0)| 00:00:01 |
|* 6 | index range scan | IR_JOIN_BACK_C_A_CODE | 1001 | | 4 (0)| 00:00:01 |
| 7 | table access by index ROWID | JOIN_BACK_C | 1001 | 14014 | 837 (1)| 00:00:01 |
|* 8 | table access full | JOIN_BACK_B | 10000 | 80000 | 143 (5)| 00:00:01 |
--------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - access("B"."B_ID"="C"."B_ID")
5 - access("A"."A_CODE"=1)
6 - access("C"."A_CODE"=1)
8 - filter("B"."B_GROUP"=1)
我正在寻找更类似于以下内容的执行路径。 尽管下方估计有 1000 万行,但此查询的行数仍保持在 100 左右。 但是,我们无法控制生成到这种程度的SQL。 这就是上面所说的像 from.
这样的星形转换中手动编写查询。select *
from join_back_a "A"
join join_back_c "C"
on A.a_code = C.a_code
join join_back_b "B"
on B.b_id = C.b_id
where C.rowid in ( select C1.rowid
from join_back_C "C1"
join join_back_a "A1"
on C1.a_code = A1.a_code
where A1.a_code = 1
intersect
select C2.rowid
from join_back_C "C2"
join join_back_b "B1"
on C2.b_id = B1.b_id
where B1.b_group = 1
)
;
---------------------------------------------------------------------------------------------------------------
| id | Operation | name | rows | Bytes |TempSpc| cost (%CPU)| time |
---------------------------------------------------------------------------------------------------------------
| 0 | select statement | | 9928K| 1316M| | 4649 (17)| 00:00:01 |
|* 1 | hash join | | 9928K| 1316M| | 4649 (17)| 00:00:01 |
| 2 | table access full | JOIN_BACK_A | 1000 | 102K| | 16 (0)| 00:00:01 |
|* 3 | hash join | | 9928K| 321M| | 4320 (11)| 00:00:01 |
| 4 | table access full | JOIN_BACK_B | 100K| 781K| | 142 (5)| 00:00:01 |
| 5 | nested LOOPS | | 10M| 248M| | 3858 (3)| 00:00:01 |
| 6 | view | VW_NSO_1 | 1001 | 12012 | | 2855 (4)| 00:00:01 |
| 7 | INTERSECTION | | | | | | |
| 8 | SORT UNIQUE | | 1001 | 18018 | | | |
| 9 | NESTED LOOPS | | 1001 | 18018 | | 5 (0)| 00:00:01 |
|* 10 | INDEX RANGE SCAN | IX_JOIN_BACK_A_CODE | 1 | 4 | | 1 (0)| 00:00:01 |
|* 11 | INDEX RANGE SCAN | IR_JOIN_BACK_C_A_CODE | 1001 | 14014 | | 4 (0)| 00:00:01 |
| 12 | SORT UNIQUE | | 99191 | 2131K| 3120K| | |
|* 13 | HASH JOIN | | 99191 | 2131K| | 1789 (5)| 00:00:01 |
|* 14 | TABLE ACCESS FULL | JOIN_BACK_B | 10000 | 80000 | | 143 (5)| 00:00:01 |
| 15 | INDEX FAST FULL SCAN | IR_JOIN_BACK_C_B_ID | 1000K| 13M| | 1614 (3)| 00:00:01 |
| 16 | TABLE ACCESS BY USER ROWID| JOIN_BACK_C | 10000 | 136K| | 1 (0)| 00:00:01 |
---------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - access("A"."A_CODE"="C"."A_CODE")
3 - access("B"."B_ID"="C"."B_ID")
10 - access("A1"."A_CODE"=1)
11 - access("C1"."A_CODE"=1)
13 - access("C2"."B_ID"="B1"."B_ID")
14 - filter("B1"."B_GROUP"=1)
尝试将 table C 上的两个外键索引制作成位图索引 - 没有成功。此外,尝试了 table C(a_code, b_id) 上的复合索引 - 再次失败。此外,复合索引不是可取的,因为我们的 table C 确实有很多外键(一些代理项和一些自然键)。
星型转换似乎有谓词 select 活跃度的黄金地带,您的谓词要么太 select 活跃,要么 select 不够活跃。
根据 Data Warehousing Guide, section 4.5.2.5 How Oracle Chooses to Use Star Transformation:
If the query requires accessing a large percentage of the rows in the fact table, it might be better to use a full table scan and not use the transformations. However, if the constraining predicates on the dimension tables are sufficiently selective that only a small portion of the fact table must be retrieved, the plan based on the transformation will probably be superior.
谓词a.a_code = 1
是主键上的相等条件。读取唯一索引几乎总是与操作一样快,如果可能,Oracle 将始终选择该路径。另一方面,谓词 b.b_group = 1
将 select 10% 的行,这是完整的 table 扫描区域,而不是您想要重复 运行 的操作在子查询中。
在你的例子中,当我注释掉唯一索引和主键时:
--create unique index IX_join_back_a_code on join_back_a(a_code);
--alter table join_back_a add constraint PK_dan_join_back_a primary key (a_code);
并更改 10% selectivity:
, mod(rownum, 10) b_group
0.1% select活性:
, mod(rownum, 1000) b_group
我可以在我的 19c 数据库上进行星型转换:
alter session set star_transformation_enabled=true;
explain plan for
select /*+ star_transformation */ *
from join_back_a "A"
join join_back_c "C"
on A.a_code = C.a_code
join join_back_b "B"
on B.b_id = C.b_id
where a.a_code = 1
and b.b_group = 1;
select * from table(dbms_xplan.display);
Plan hash value: 3923125903
-----------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 153 | 126 (1)| 00:00:01 |
| 1 | TEMP TABLE TRANSFORMATION | | | | | |
| 2 | LOAD AS SELECT (CURSOR DURATION MEMORY)| SYS_TEMP_0FD9D66A0_377EE48 | | | | |
| 3 | TABLE ACCESS BY INDEX ROWID BATCHED | JOIN_BACK_B | 100 | 900 | 101 (0)| 00:00:01 |
|* 4 | INDEX RANGE SCAN | IX_JOIN_BACK_B_GROUP | 100 | | 1 (0)| 00:00:01 |
|* 5 | HASH JOIN | | 1 | 153 | 25 (4)| 00:00:01 |
|* 6 | VIEW | VW_ST_D5F377AC | 1 | 39 | 16 (7)| 00:00:01 |
| 7 | NESTED LOOPS | | 1 | 28 | 14 (8)| 00:00:01 |
| 8 | BITMAP CONVERSION TO ROWIDS | | | 13 | 14 (8)| 00:00:01 |
| 9 | BITMAP AND | | | | | |
| 10 | BITMAP CONVERSION FROM ROWIDS | | | | | |
|* 11 | INDEX RANGE SCAN | IR_JOIN_BACK_C_A_CODE | | | 5 (0)| 00:00:01 |
| 12 | BITMAP MERGE | | | | | |
| 13 | BITMAP KEY ITERATION | | | | | |
| 14 | TABLE ACCESS FULL | SYS_TEMP_0FD9D66A0_377EE48 | 100 | 500 | 2 (0)| 00:00:01 |
| 15 | BITMAP CONVERSION FROM ROWIDS | | | | | |
|* 16 | INDEX RANGE SCAN | IR_JOIN_BACK_C_B_ID | | | 3 (0)| 00:00:01 |
| 17 | TABLE ACCESS BY USER ROWID | JOIN_BACK_C | 1 | 14 | 2 (0)| 00:00:01 |
| 18 | MERGE JOIN CARTESIAN | | 100 | 11400 | 9 (0)| 00:00:01 |
|* 19 | TABLE ACCESS FULL | JOIN_BACK_A | 1 | 105 | 7 (0)| 00:00:01 |
| 20 | BUFFER SORT | | 100 | 900 | 2 (0)| 00:00:01 |
| 21 | TABLE ACCESS FULL | SYS_TEMP_0FD9D66A0_377EE48 | 100 | 900 | 2 (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
4 - access("B"."B_GROUP"=1)
5 - access("C0"="ITEM_2" AND "A"."A_CODE"="ITEM_1")
6 - filter("ITEM_1"=1)
11 - access("C"."A_CODE"=1)
16 - access("C"."B_ID"="C0")
19 - filter("A"."A_CODE"=1)
Note
-----
- star transformation used for this statement
我不确定这个答案是否会帮助您改进查询,但希望它至少可以帮助解释为什么您的查询没有按您想要的方式工作。
除了 Jon Heller 的回答:
On the other hand, the predicate b.b_group = 1 will select 10% of the rows, which is in full table scan territory, and is not an operation you want to run repeatedly in a subquery.
mod(rownum, 10) b_group
不仅提供了 10% 的选择性,而且还意味着在您的测试用例中每个 table 块包含几十个这样的行:
SQL> select count(distinct dbms_rowid.rowid_block_number(rowid)) from join_back_b;
COUNT(DISTINCTDBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID))
---------------------------------------------------
177
SQL> select count(distinct dbms_rowid.rowid_block_number(rowid)) from join_back_b where b_group=1;
COUNT(DISTINCTDBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID))
---------------------------------------------------
177
SQL> select min(cnt), max(cnt), avg(cnt)
2 from (
3 select dbms_rowid.rowid_block_number(rowid) block_n, count(*) cnt
4 from join_back_b
5 where b_group=1
6 group by dbms_rowid.rowid_block_number(rowid)
7 );
MIN(CNT) MAX(CNT) AVG(CNT)
---------- ---------- ----------
49 62 56.4971751
它为我们提供了来自 B 的 10000 行,b.b_id=c.b_id
谓词为我们提供了来自 JOIN_BACK_C
的约 10% 的选择性,这也意味着 JOIN_BACK_C
的每个块包含几十个所需的行:
SQL> select count(distinct dbms_rowid.rowid_block_number(rowid)) from join_back_c;
COUNT(DISTINCTDBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID))
---------------------------------------------------
2597
select min(cnt), max(cnt), avg(cnt), count(distinct block_n)
from (
select dbms_rowid.rowid_block_number(c.rowid) block_n, count(*) cnt
from join_back_b b
join join_back_c c
on b.b_id=c.b_id
where b_group=1
group by dbms_rowid.rowid_block_number(c.rowid)
);
MIN(CNT) MAX(CNT) AVG(CNT) COUNT(DISTINCTBLOCK_N)
---------- ---------- ---------- ----------------------
8 57 38.6334232 2597
此外 join_back_c.a_code=1
也给出了糟糕的选择性 ~ 1/1000 = 随机块中的 1000 行,而这个 table 只包含 ~2500 个块。所以你需要扫描 table 块的 1/2.5 =~ 40%。显然,最好使用多块读取来完成。
但是如果我们 return 解决主要问题:是的,我理解您的问题 - 有时最好将一个行源拆分为 2 个不同的访问路径,而 CBO 通常无法做到这一点。对于这种情况有一种标准方法 - 重写查询并复制行源两次,例如:
稍微修改了测试数据以获得更好的结果selectivity/reduced IO:
create table join_back_b
as
with "D" as (select /*+ materialize */ 1 from dual connect by level <= 320)
select rownum b_id
, mod(rownum, 1000) b_group
from "D", "D"
where rownum <= 100000 --100k
order by b_group
;
和+填充(使行更大):
create table join_back_c
as
with "D" as (select /*+ materialize */ level from dual connect by level <= 3200)
select rownum c_id
, trunc(dbms_random.value(1, 1000)) a_code --table a FK
, trunc(dbms_random.value(1, 100000)) b_id --table b FK
, rpad('x',100,'x') padding
from "D", "D"
where rownum <= 1000000 -- 1M
;
示例:
with
ac as (
select c.rowid rid
,a.*
from join_back_a A
join join_back_c C
on A.a_code = C.a_code
where a.a_code = 1
)
,bc as (
select c.rowid rid
,b.*
from join_back_b B
join join_back_c C
on b.b_id = c.b_id
where b.b_group = 1
)
select--+ no_adaptive_plan NO_ELIMINATE_JOIN(c) no_merge(ac) no_merge(bc)
*
from ac
join bc on ac.rid=bc.rid
join join_back_c C
on bc.rid = c.rowid;
计划:
Plan hash value: 3065703407
-----------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 230 | 209 (0)| 00:00:01 |
| 1 | NESTED LOOPS | | 1 | 230 | 209 (0)| 00:00:01 |
|* 2 | HASH JOIN | | 1 | 115 | 208 (0)| 00:00:01 |
| 3 | VIEW | | 992 | 37696 | 202 (0)| 00:00:01 |
| 4 | NESTED LOOPS | | 992 | 25792 | 202 (0)| 00:00:01 |
| 5 | TABLE ACCESS BY INDEX ROWID BATCHED| JOIN_BACK_B | 100 | 900 | 2 (0)| 00:00:01 |
|* 6 | INDEX RANGE SCAN | IX_JOIN_BACK_B_GROUP | 100 | | 1 (0)| 00:00:01 |
|* 7 | INDEX RANGE SCAN | IR_JOIN_BACK_C_B_ID | 10 | 170 | 2 (0)| 00:00:01 |
| 8 | VIEW | | 1001 | 77077 | 6 (0)| 00:00:01 |
| 9 | NESTED LOOPS | | 1001 | 118K| 6 (0)| 00:00:01 |
| 10 | TABLE ACCESS BY INDEX ROWID | JOIN_BACK_A | 1 | 105 | 2 (0)| 00:00:01 |
|* 11 | INDEX UNIQUE SCAN | IX_JOIN_BACK_A_CODE | 1 | | 1 (0)| 00:00:01 |
|* 12 | INDEX RANGE SCAN | IR_JOIN_BACK_C_A_CODE | 1001 | 16016 | 4 (0)| 00:00:01 |
| 13 | TABLE ACCESS BY USER ROWID | JOIN_BACK_C | 1 | 115 | 1 (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("AC"."RID"="BC"."RID")
6 - access("B"."B_GROUP"=1)
7 - access("B"."B_ID"="C"."B_ID")
11 - access("A"."A_CODE"=1)
12 - access("C"."A_CODE"=1)