偏斜二叉树的直径是多少(左偏或右偏树)?
What is the diameter of skew binary trees( either left skew of right skew tree)?
Diameter of binary tree is defined as:-
The longest path between 2 leaf nodes in BT.
let left height=lht, right height=rht,
left left diameter=ld , right diameter= rd;
then
diameter= max((lht + rht + 1), max (ld,rd));
但是在倾斜树中只有一个叶节点,那么我们如何获得倾斜树的直径。
是0吗?
一棵倾斜的树只有一片叶子,因此在这种情况下不会定义直径,因为它是树的两片叶子之间的最长距离。
如果那是二叉树的直径的定义,那么你显然需要两个叶节点。所以如果这棵树只有一片叶子,根据这个定义,直径是不确定的。
虽然这个定义看起来很可疑,因为它使直径成为 路径:
The longest path between 2 leaf nodes in BT
当然,这甚至与以下内容不一致:
diameter = max((lht + rht + 1), max (ld,rd));
...因为它将直径定义为数字,而不是路径。
所以至少定义应该是:
The length of the longest path between 2 leaf nodes in BT
另外,提供的公式只给出了递归关系,没有给出base case。没有基本情况,这个公式就没有定义任何东西。
所以我要强调你的“定义”非常不稳定...
将此与以下图的直径(不一定是树)的定义进行比较:
-
The graph diameter of a graph is the length [...] of the "longest shortest path" (i.e., the longest graph geodesic) between any two graph vertices
-
The diameter of a graph is [...] the greatest distance between any pair of vertices [...]. To find the diameter of a graph, first find the shortest path between each pair of vertices. The greatest length of any of these paths is the diameter of the graph.
-
The diameter of graph is the maximum distance between the pair of vertices. [...] Way to solve it is to find all the paths and then find the maximum of all.
-
The maximum among all the distances between a vertex to all other vertices is considered as the diameter of the Graph G.
这个定义给出的结果与你引用的定义相同,只要它涉及一棵至少有两片叶子的树。但是当树只有一片叶子时,这些定义就不兼容了。根据上述来源的定义,倾斜二叉树的直径将是根与(唯一)叶之间的距离。
边界情况是树只有一个节点,即根。在这种情况下,该图的直径将为 0(根据上面的引述)。
Diameter of binary tree is defined as:-
The longest path between 2 leaf nodes in BT.
let left height=lht, right height=rht,
left left diameter=ld , right diameter= rd;
then
diameter= max((lht + rht + 1), max (ld,rd));
但是在倾斜树中只有一个叶节点,那么我们如何获得倾斜树的直径。 是0吗?
一棵倾斜的树只有一片叶子,因此在这种情况下不会定义直径,因为它是树的两片叶子之间的最长距离。
如果那是二叉树的直径的定义,那么你显然需要两个叶节点。所以如果这棵树只有一片叶子,根据这个定义,直径是不确定的。
虽然这个定义看起来很可疑,因为它使直径成为 路径:
The longest path between 2 leaf nodes in BT
当然,这甚至与以下内容不一致:
diameter = max((lht + rht + 1), max (ld,rd));
...因为它将直径定义为数字,而不是路径。
所以至少定义应该是:
The length of the longest path between 2 leaf nodes in BT
另外,提供的公式只给出了递归关系,没有给出base case。没有基本情况,这个公式就没有定义任何东西。
所以我要强调你的“定义”非常不稳定...
将此与以下图的直径(不一定是树)的定义进行比较:
-
The graph diameter of a graph is the length [...] of the "longest shortest path" (i.e., the longest graph geodesic) between any two graph vertices
-
The diameter of a graph is [...] the greatest distance between any pair of vertices [...]. To find the diameter of a graph, first find the shortest path between each pair of vertices. The greatest length of any of these paths is the diameter of the graph.
-
The diameter of graph is the maximum distance between the pair of vertices. [...] Way to solve it is to find all the paths and then find the maximum of all.
-
The maximum among all the distances between a vertex to all other vertices is considered as the diameter of the Graph G.
这个定义给出的结果与你引用的定义相同,只要它涉及一棵至少有两片叶子的树。但是当树只有一片叶子时,这些定义就不兼容了。根据上述来源的定义,倾斜二叉树的直径将是根与(唯一)叶之间的距离。
边界情况是树只有一个节点,即根。在这种情况下,该图的直径将为 0(根据上面的引述)。