如何在数据帧计算中用矢量函数替换 R 中的 for 循环?

How do I replace a for- loop in R with vector functions in dataframe calculations?

我一直在努力避免在 R 中使用 for 循环以加快计算和简化,尽可能地依赖向量函数。到目前为止,我已经成功了,直到 运行 进入某些摊销计算。我碰壁了,不得不求助于 for 循环,请参阅下面的 MWE 代码。它工作正常,但我想用 vector 或其他更高效的函数替换它。有人可以帮我用向量函数替换下面的内容吗?

在从中提取此 MWE 的完整代码中,它使用 Shiny 进行反应。周期和向量速率,实际上是所有变量,都会根据用户输入发生剧烈变化。 MWE 示例输入变量已简化。

无论如何,下面是一个非常笨拙的电锯方法,需要精简。但是我不知道如何从我最有经验的完整 XLS 思维方式来处理这个问题。如果 for 循环是此类计算的唯一可行选择,我欢迎任何改进以下 MWE 的建议。

最底部是尝试“矢量化”的有缺陷的代码,但当矢量变量随时间变化时结果不准确。我在底部的图像中展示了这种矢量化方法的一个问题,其中 ending/beginning 余额在从一个时期移动到下一个时期时不匹配(for-loop MWE 代码没有这些问题 - 它是功能齐全但超级笨拙)。

For循环MWE代码:

periods        <- 10
beginBal       <- 1000
yield_vector   <- c(0.30,0.30,0.30,0.30,0.30,0.28,0.26,0.20,0.18,0.20)
npr_vector     <- c(0.30,0.30,0.30,0.30,0.30,0.30,0.30,0.30,0.30,0.30)
mpr_vector     <- c(0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20)
default_vector <- c(0.10,0.10,0.10,0.10,0.10,0.09,0.08,0.07,0.06,0.05)

amort <- data.frame(period=seq(1,periods,1),
                    beginBal=rep(NA,periods),
                    yield=rep(NA,periods,),
                    purchases=rep(NA,periods),
                    payments=rep(NA,periods),
                    defaults=rep(NA,periods),
                    endBal=rep(NA,periods))

# Completes first row of data frame
amort[1,2] <- beginBal
amort[1,3] <- beginBal * yield_vector[1]/12
amort[1,4] <- beginBal * npr_vector[1]
amort[1,5] <- beginBal * mpr_vector[1]
amort[1,6] <- beginBal * default_vector[1] / 12
amort[1,7] <- beginBal + amort[1,4] - amort[1,5] - amort[1,6]

# Completes remaining rows of data frame
for(i in 2:nrow(amort)){
amort[i,2] <- amort[i-1,7]
amort[i,3] <- amort[i,2] * yield_vector[i]/12
amort[i,4] <- amort[i,2] * npr_vector[i]
amort[i,5] <- amort[i,2] * mpr_vector[i]
amort[i,6] <- amort[i,2] * default_vector[i]/12
amort[i,7] <- amort[i,2] + amort[i,4] - amort[i,5] - amort[i,6]
}
amort

这是一个看起来很漂亮但有缺陷的矢量化尝试,请参见下图中的输出缺陷之一(这些问题不会出现在上面的 for 循环 MWE 中):

amort           <- data.frame(period=seq(1,periods,1))
amort$beginBal  <- beginBal*(1-(mpr_vector[]+default_vector[]/12-npr_vector[]))^(amort$period-1)
amort$yield     <- amort$beginBal*yield_vector[]/12
amort$purchases <- amort$beginBal*npr_vector[]
amort$payments  <- amort$beginBal*mpr_vector[]
amort$defaults  <- amort$beginBal*default_vector[]/12
amort$endBal    <- amort$beginBal+amort$purchases-amort$payments-amort$defaults

amort <- cbind(amort,yield_vector,npr_vector,mpr_vector,default_vector)
amort

你可以这样做:

f <- function(x, y){
  x  * (1 + npr_vector[y] - mpr_vector[y] -  default_vector[y] / 12)
}

res <- Reduce(f, seq(periods), init = beginBal, accumulate = TRUE)
b <- head(res, -1)

result <- data.frame(period = seq(periods), beginBal = b,  yield = b * yield_vector/ 12,
           purchases = b * npr_vector,  payments = b * mpr_vector, 
           defaults = b * default_vector/12,   endBal = res[-1])

检查:

result
   period beginBal    yield purchases payments  defaults   endBal
1       1 1000.000 25.00000  300.0000 200.0000  8.333333 1091.667
2       2 1091.667 27.29167  327.5000 218.3333  9.097222 1191.736
3       3 1191.736 29.79340  357.5208 238.3472  9.931134 1300.979
4       4 1300.979 32.52446  390.2936 260.1957 10.841488 1420.235
5       5 1420.235 35.50587  426.0705 284.0470 11.835291 1550.423
6       6 1550.423 36.17654  465.1269 310.0846 11.628174 1693.837
7       7 1693.837 36.69981  508.1512 338.7675 11.292249 1851.929
8       8 1851.929 30.86548  555.5786 370.3858 10.802918 2026.319
9       9 2026.319 30.39478  607.8956 405.2637 10.131594 2218.819
10     10 2218.819 36.98032  665.6457 443.7638  9.245079 2431.456
 

all.equal(result, amort)
[1] TRUE

此解决方案也可用于 tidyverse:

library(dplyr)
library(purrr)

data2 <- cbind(period, yield_vector, npr_vector, mpr_vector, default_vector)

data2 %>%
  nest_by(period) %>%
  ungroup() %>%
  mutate(beginBal = accumulate(data[-1], .init = beginBal,
                             ~ .x + 
                               (.x * .y$npr_vector) - 
                               (.x * .y$mpr_vector) - 
                               (.x * .y$default_vector / 12))) %>%
  unnest(data) %>%
  mutate(yield = beginBal * yield_vector/12,
         purchases = beginBal * npr_vector, 
         payments = beginBal * mpr_vector,
         defaults = beginBal * default_vector / 12,
         endBal = beginBal + purchases - payments - defaults) %>%
  select(!contains("vector"))

输出

# A tibble: 10 x 7
   period beginBal yield purchases payments defaults endBal
    <dbl>    <dbl> <dbl>     <dbl>    <dbl>    <dbl>  <dbl>
 1      1    1000   25        300      200      8.33  1092.
 2      2    1092.  27.3      328.     218.     9.10  1192.
 3      3    1192.  29.8      358.     238.     9.93  1301.
 4      4    1301.  32.5      390.     260.    10.8   1420.
 5      5    1420.  35.5      426.     284.    11.8   1550.
 6      6    1552.  36.2      465.     310.    11.6   1695.
 7      7    1696.  36.8      509.     339.    11.3   1855.
 8      8    1856.  30.9      557.     371.    10.8   2031.
 9      9    2033.  30.5      610.     407.    10.2   2226.
10     10    2227.  37.1      668.     445.     9.28  2441.

如果不在 baseR 中使用 Reduce,我会这样做

解释-

  • 对于每一行,您实际上通过将该行的 beginBal 乘以 1 + npr_vector - mpr_vector - default_vector/12
  • 创建了一个 Endbal
  • 所以我创建了一个 dummy/anonymous 向量,方法是将 1 附加到它的开头并获得它的累积积。喜欢cumprod(c(1, 1 + npr_vector - mpr_vector - default_vector/12)
  • 此后使用 [-(periods + 1)]
  • 剪裁了它的最后一个元素
  • 然后乘以 beginBal 初始值。这将为每个 period
  • 提供 beginBal
  • 改变其余列非常简单。
  • 如果您需要任何进一步的解释,请随时询问。
#given data

periods        <- 10
beginBal       <- 1000
yield_vector   <- c(0.30,0.30,0.30,0.30,0.30,0.28,0.26,0.20,0.18,0.20)
npr_vector     <- c(0.30,0.30,0.30,0.30,0.30,0.30,0.30,0.30,0.30,0.30)
mpr_vector     <- c(0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20,0.20)
default_vector <- c(0.10,0.10,0.10,0.10,0.10,0.09,0.08,0.07,0.06,0.05)

amort <- data.frame(Period = seq(periods),
                    beginBal = beginBal * cumprod(c(1, 1 + npr_vector - mpr_vector - default_vector/12)[-(periods + 1)]))

amort <- transform(amort, Yeild = beginBal * yield_vector/12,
                    Purchases = beginBal * npr_vector,
                    Payments = beginBal * mpr_vector,
                    defaults = beginBal * default_vector/12,
                    EndBal = beginBal * (1 + npr_vector - mpr_vector - default_vector/12))

amort
#>    Period beginBal    Yeild Purchases Payments  defaults   EndBal
#> 1       1 1000.000 25.00000  300.0000 200.0000  8.333333 1091.667
#> 2       2 1091.667 27.29167  327.5000 218.3333  9.097222 1191.736
#> 3       3 1191.736 29.79340  357.5208 238.3472  9.931134 1300.979
#> 4       4 1300.979 32.52446  390.2936 260.1957 10.841488 1420.235
#> 5       5 1420.235 35.50587  426.0705 284.0470 11.835291 1550.423
#> 6       6 1550.423 36.17654  465.1269 310.0846 11.628174 1693.837
#> 7       7 1693.837 36.69981  508.1512 338.7675 11.292249 1851.929
#> 8       8 1851.929 30.86548  555.5786 370.3858 10.802918 2026.319
#> 9       9 2026.319 30.39478  607.8956 405.2637 10.131594 2218.819
#> 10     10 2218.819 36.98032  665.6457 443.7638  9.245079 2431.456

reprex package (v2.0.0)

于 2021-07-16 创建

dplyr中只有

library(dplyr, warn.conflicts = F)

#amortisation

seq(periods) %>%
  as.data.frame() %>%
  setNames('Period') %>%
  mutate(beginBal = beginBal * cumprod(c(1, 1 + npr_vector - mpr_vector - default_vector/12)[-(periods + 1)]),
         Yeild = beginBal * yield_vector/12,
         Purchases = beginBal * npr_vector,
         Payments = beginBal * mpr_vector,
         defaults = beginBal * default_vector/12,
         EndBal = beginBal * (1 + npr_vector - mpr_vector - default_vector/12))

#>    Period beginBal    Yeild Purchases Payments  defaults   EndBal
#> 1       1 1000.000 25.00000  300.0000 200.0000  8.333333 1091.667
#> 2       2 1091.667 27.29167  327.5000 218.3333  9.097222 1191.736
#> 3       3 1191.736 29.79340  357.5208 238.3472  9.931134 1300.979
#> 4       4 1300.979 32.52446  390.2936 260.1957 10.841488 1420.235
#> 5       5 1420.235 35.50587  426.0705 284.0470 11.835291 1550.423
#> 6       6 1550.423 36.17654  465.1269 310.0846 11.628174 1693.837
#> 7       7 1693.837 36.69981  508.1512 338.7675 11.292249 1851.929
#> 8       8 1851.929 30.86548  555.5786 370.3858 10.802918 2026.319
#> 9       9 2026.319 30.39478  607.8956 405.2637 10.131594 2218.819
#> 10     10 2218.819 36.98032  665.6457 443.7638  9.245079 2431.456

但是,在 purrr::accumulate 中,语法将是

library(tidyverse)

# amortisation

seq(periods) %>%
  as.data.frame() %>%
  setNames('Period') %>%
  mutate(beginBal = accumulate(1 + npr_vector - mpr_vector - default_vector/12, .init = beginBal,
                               ~ .x * .y)[-(n() + 1)],
         Yeild = beginBal * yield_vector/12,
         Purchases = beginBal * npr_vector,
         Payments = beginBal * mpr_vector,
         defaults = beginBal * default_vector/12,
         EndBal = beginBal * (1 + npr_vector - mpr_vector - default_vector/12))

#>    Period beginBal    Yeild Purchases Payments  defaults   EndBal
#> 1       1 1000.000 25.00000  300.0000 200.0000  8.333333 1091.667
#> 2       2 1091.667 27.29167  327.5000 218.3333  9.097222 1191.736
#> 3       3 1191.736 29.79340  357.5208 238.3472  9.931134 1300.979
#> 4       4 1300.979 32.52446  390.2936 260.1957 10.841488 1420.235
#> 5       5 1420.235 35.50587  426.0705 284.0470 11.835291 1550.423
#> 6       6 1550.423 36.17654  465.1269 310.0846 11.628174 1693.837
#> 7       7 1693.837 36.69981  508.1512 338.7675 11.292249 1851.929
#> 8       8 1851.929 30.86548  555.5786 370.3858 10.802918 2026.319
#> 9       9 2026.319 30.39478  607.8956 405.2637 10.131594 2218.819
#> 10     10 2218.819 36.98032  665.6457 443.7638  9.245079 2431.456