根据另一个列值重新采样和聚合数据
Resample and aggregate data according to another column value
我的时间序列是这样的:
TranID,Time,Price,Volume,SaleOrderVolume,BuyOrderVolume,Type,SaleOrderID,SaleOrderPrice,BuyOrderID,BuyOrderPrice
1,09:25:00,137.69,200,200,453,B,182023,137.69,241939,137.69
2,09:25:00,137.69,253,300,453,S,184857,137.69,241939,137.69
3,09:25:00,137.69,47,300,200,B,184857,137.69,241322,137.69
4,09:25:00,137.69,153,200,200,B,219208,137.69,241322,137.69
我想按体积重新采样和聚合数据帧,但结果,我应该能够得到类似的东西:
Time, Volume_B, Volume_S
09:25:00, 400, 253
当 Type 为 'B' 时,Volume_B 为聚合卷,当其 Type[] 为 Volume_S 时,为聚合卷=25=] 是 'S'.
我的函数如下所示,但效果不佳。
data.resample('t').agg(Volume_B=(Volume=lambda x: np.where(x['Type']=='B', x['Volume'], 0)), Volume_A=(Volume=lambda x: np.where(x['Type']=='S', x['Volume'], 0)))
如何正确实施?
一种方法是像您一样在 np.where
之前创建列 Volume_B(和 _S),然后聚合,因此:
res = (
df.assign(Volume_B= lambda x: np.where(x['Type']=='B', x['Volume'], 0),
Volume_S= lambda x: np.where(x['Type']=='S', x['Volume'], 0))\
.groupby(df['Time']) # you can replace by resample here
[['Volume_B','Volume_S']].sum()
.reset_index()
)
print(res)
Time Volume_B Volume_S
0 09:25:00 400 253
编辑,使用你的输入(并在时间列上聚合),然后你也可以做一个 pivot_table
比如:
(df.pivot_table(index='Time', columns='Type',
values='Volume', aggfunc=sum)
.add_prefix('Volume_')
.reset_index()
.rename_axis(columns=None)
)
我的时间序列是这样的:
TranID,Time,Price,Volume,SaleOrderVolume,BuyOrderVolume,Type,SaleOrderID,SaleOrderPrice,BuyOrderID,BuyOrderPrice
1,09:25:00,137.69,200,200,453,B,182023,137.69,241939,137.69
2,09:25:00,137.69,253,300,453,S,184857,137.69,241939,137.69
3,09:25:00,137.69,47,300,200,B,184857,137.69,241322,137.69
4,09:25:00,137.69,153,200,200,B,219208,137.69,241322,137.69
我想按体积重新采样和聚合数据帧,但结果,我应该能够得到类似的东西:
Time, Volume_B, Volume_S
09:25:00, 400, 253
当 Type 为 'B' 时,Volume_B 为聚合卷,当其 Type[] 为 Volume_S 时,为聚合卷=25=] 是 'S'.
我的函数如下所示,但效果不佳。
data.resample('t').agg(Volume_B=(Volume=lambda x: np.where(x['Type']=='B', x['Volume'], 0)), Volume_A=(Volume=lambda x: np.where(x['Type']=='S', x['Volume'], 0)))
如何正确实施?
一种方法是像您一样在 np.where
之前创建列 Volume_B(和 _S),然后聚合,因此:
res = (
df.assign(Volume_B= lambda x: np.where(x['Type']=='B', x['Volume'], 0),
Volume_S= lambda x: np.where(x['Type']=='S', x['Volume'], 0))\
.groupby(df['Time']) # you can replace by resample here
[['Volume_B','Volume_S']].sum()
.reset_index()
)
print(res)
Time Volume_B Volume_S
0 09:25:00 400 253
编辑,使用你的输入(并在时间列上聚合),然后你也可以做一个 pivot_table
比如:
(df.pivot_table(index='Time', columns='Type',
values='Volume', aggfunc=sum)
.add_prefix('Volume_')
.reset_index()
.rename_axis(columns=None)
)