查找每个工作日的平均事件

find average incidents per business day

我有一个数据集如下:

+----+-------+---------------------+
| ID | SUBID |        date         |
+----+-------+---------------------+
| A  |     1 | 2021-01-01 12:00:00 |
| A  |     1 | 2021-01-02 01:00:00 |
| A  |     1 | 2021-01-02 02:00:00 |
| A  |     1 | 2021-01-03 03:00:00 |
| A  |     2 | 2021-01-05 16:00:00 |
| A  |     2 | 2021-01-06 13:00:00 |
| A  |     2 | 2021-01-07 06:00:00 |
| A  |     2 | 2021-01-08 08:00:00 |
| A  |     2 | 2021-01-08 10:00:00 |
| A  |     2 | 2021-01-08 11:00:00 |
| A  |     3 | 2021-01-09 09:00:00 |
| A  |     3 | 2021-01-10 19:00:00 |
| A  |     3 | 2021-01-11 20:00:00 |
| A  |     3 | 2021-01-12 22:00:00 |
| B  |     1 | 2021-02-01 23:00:00 |
| B  |     1 | 2021-02-02 15:00:00 |
| B  |     1 | 2021-02-03 06:00:00 |
| B  |     1 | 2021-02-04 08:00:00 |
| B  |     2 | 2021-02-05 18:00:00 |
| B  |     2 | 2021-02-05 19:00:00 |
| B  |     2 | 2021-02-06 22:00:00 |
| B  |     2 | 2021-02-06 23:00:00 |
| B  |     2 | 2021-02-07 04:00:00 |
| B  |     2 | 2021-02-08 02:00:00 |
| B  |     3 | 2021-02-09 01:00:00 |
| B  |     3 | 2021-02-10 03:00:00 |
| B  |     3 | 2021-02-11 13:00:00 |
| B  |     3 | 2021-02-12 14:00:00 |
+----+-------+---------------------+

我希望能够得到每个ID和SUBID组之间的时间差,以小时为单位,最好是营业时间,其中每个出现在周末或联邦假日的日期都可以移到一个最近的工作日(之前或之后),时间为 23:59:59,如下所示:

+----+-------+---------------------+------------------------------------------------------------------+
| ID | SUBID |        date         | timediff (hours) with preceding date for each group (ID, SUBID) |
+----+-------+---------------------+------------------------------------------------------------------+
| A  |     1 | 2021-01-01 12:00:00 |                                                                0 |
| A  |     1 | 2021-01-02 01:00:00 |                                                               13 |
| A  |     1 | 2021-01-02 02:00:00 |                                                                1 |
| A  |     1 | 2021-01-03 03:00:00 |                                                                1 |
| A  |     2 | 2021-01-05 16:00:00 |                                                                0 |
| A  |     2 | 2021-01-06 13:00:00 |                                                               21 |
| A  |     2 | 2021-01-07 06:00:00 |                                                               17 |
| A  |     2 | 2021-01-08 08:00:00 |                                                                2 |
| A  |     2 | 2021-01-08 10:00:00 |                                                                2 |
| A  |     2 | 2021-01-08 11:00:00 |                                                                1 |
| A  |     3 | 2021-01-09 09:00:00 |                                                                0 |
| A  |     3 | 2021-01-10 19:00:00 |                                                               36 |
| A  |     3 | 2021-01-11 20:00:00 |                                                                1 |
| A  |     3 | 2021-01-12 22:00:00 |                                                                1 |
| B  |     1 | 2021-02-01 23:00:00 |                                                                0 |
| B  |     1 | 2021-02-02 15:00:00 |                                                               16 |
| B  |     1 | 2021-02-03 06:00:00 |                                                               15 |
| B  |     1 | 2021-02-04 08:00:00 |                                                               26 |
| B  |     2 | 2021-02-05 18:00:00 |                                                                0 |
| B  |     2 | 2021-02-05 19:00:00 |                                                                1 |
| B  |     2 | 2021-02-06 22:00:00 |                                                               27 |
| B  |     2 | 2021-02-06 23:00:00 |                                                                1 |
| B  |     2 | 2021-02-07 04:00:00 |                                                                5 |
| B  |     2 | 2021-02-08 02:00:00 |                                                               22 |
| B  |     3 | 2021-02-09 01:00:00 |                                                                0 |
| B  |     3 | 2021-02-10 03:00:00 |                                                               26 |
| B  |     3 | 2021-02-11 13:00:00 |                                                               11 |
| B  |     3 | 2021-02-12 14:00:00 |                                                                1 |
+----+-------+---------------------+------------------------------------------------------------------+

最后我想计算平均时间,即每组时间差总和(ID、SUBID)除以每组总计数,如下所示:

+----+-------+------------------------------------------------------------+
| ID | SUBID | Average  time (count per group/ total time diff of group ) |
+----+-------+------------------------------------------------------------+
| A  |     1 | 15/4                                                       |
| A  |     2 | 43/6                                                       |
| A  |     3 | 38/4                                                       |
| B  |     1 | 57/4                                                       |
| B  |     2 | 56/6                                                       |
| B  |     3 | 38/4                                                       |
+----+-------+------------------------------------------------------------+

我是 R 的新手,我遇到了 lubridate 来帮助我格式化日期,我能够使用下面的代码获得时间差异

df%>%
        group_by(ID, SUBID) %>%
        mutate(time_diff = difftime(date, lag(date), unit = 'min'))

但是我在获取工作日时间差异以及根据上次 table

获取平均时间时遇到了麻烦

欢迎来到 SO!使用 dplyrlubridate:

使用的数据:

library(tidyverse)
library(lubridate)
df <- data.frame(ID = c("A","A","A","A"),
                 SUBID = c(1,1,2,2),
                 Date = lubridate::as_datetime(c("2021-01-01 12:00:00","2021-01-02 1:00:00","2021-01-01 2:00:00","2021-01-01 13:00:00")))

  ID SUBID                Date
1  A     1 2021-01-01 12:00:00
2  A     1 2021-01-02 01:00:00
3  A     2 2021-01-01 02:00:00
4  A     2 2021-01-01 13:00:00

代码:

df %>% 
  group_by(ID, SUBID) %>% 
  mutate(diff = Date - lag(Date)) %>% 
  mutate(diff = ifelse(is.na(diff), 0, diff)) %>% 
  summarise(Average = sum(diff)/n())

输出:

  ID    SUBID Average
  <chr> <dbl>   <dbl>
1 A         1     6.5
2 A         2     5.5

编辑:如何处理week_ends

对于周末,更简单的解决方案是将这一天更改为下一个星期一:

df %>% 
  mutate(week_day = wday(Date,label = TRUE, abbr = FALSE)) %>%
  mutate(Date = ifelse(week_day == "samedi", Date + days(2),
                       ifelse(week_day == "dimanche", Date + days(1), Date))) %>%
  mutate(Date = as_datetime(Date))

这将创建带有日期名称的列 week_day。如果这一天是“samedi”(星期六)或“dimanche”(星期日),它会将日期增加 2 天或 1 天,这样它就变成了星期一。然后,您只需要重新排序日期(df %>% arrange(ID, SUBID, Date)) 并重新运行第一个代码。

由于我的本地语言是法语,所以您必须将 samedidimanche 更改为 saturdaysunday

对于假期,您可以通过创建表示假期的时间间隔变量来应用相同的系统,测试每个日期是否在此间隔内,如果是,则将日期更改为该日期的最后一天这个区间。