将 tf_hub 个模型转换为 tflite
Convert tf_hub models to tflite
我正在尝试将 tf_hub 模型 (MUSE) 转换为 tflite,但我得到的 FileNotFoundError
非常奇怪,我不知道如何解释该错误信息。这是我的代码和错误消息:
import tensorflow as tf
import tensorflow_hub as hub
model = tf.keras.Sequential()
model.add(tf.keras.layers.InputLayer(dtype=tf.string, input_shape=()))
model.add(hub.KerasLayer("https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"))
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
tf.lite.OpsSet.SELECT_TF_OPS, # enable TensorFlow ops.
]
tflite_model = converter.convert()
我得到的错误是:
FileNotFoundError: Op type not registered 'SentencepieceOp' in binary running on hongtao-mac. Make sure the Op and Kernel are registered in the binary running in this process. Note that if you are loading a saved graph which used ops from tf.contrib, accessing (e.g.) `tf.contrib.resampler` should be done before importing the graph, as contrib ops are lazily registered when the module is first accessed.
If trying to load on a different device from the computational device, consider using setting the `experimental_io_device` option on tf.saved_model.LoadOptions to the io_device such as '/job:localhost'.
有什么想法吗?
注意:可能相关的问题:Tensorflow hub.load Model to TFLite
https://tfhub.dev/google/universal-sentence-encoder-multilingual/3 states that you need to install tensorflow-text
and import it before loading a model. https://www.tensorflow.org/lite/convert 的文档说建议使用 from_saved_model
而不是 from_keras_model
。以下内容在新的 Colab 中对我有用:
!pip install -q tensorflow-text
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_text as text
hub.load("https://tfhub.dev/google/universal-sentence-encoder-multilingual/3") # Caches the model in /tmp/tfhub_modules
converter = tf.lite.TFLiteConverter.from_saved_model("/tmp/tfhub_modules/26c892ffbc8d7b032f5a95f316e2841ed4f1608c")
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
tf.lite.OpsSet.SELECT_TF_OPS, # enable TensorFlow ops.
]
tflite_file = "model.tflite"
with open(tflite_file, 'wb') as f:
f.write(converter.convert())
interpreter = tf.lite.Interpreter(tflite_file)
interpreter.get_signature_list() # {'serving_default': {'inputs': ['inputs'], 'outputs': ['outputs']}}
我正在尝试将 tf_hub 模型 (MUSE) 转换为 tflite,但我得到的 FileNotFoundError
非常奇怪,我不知道如何解释该错误信息。这是我的代码和错误消息:
import tensorflow as tf
import tensorflow_hub as hub
model = tf.keras.Sequential()
model.add(tf.keras.layers.InputLayer(dtype=tf.string, input_shape=()))
model.add(hub.KerasLayer("https://tfhub.dev/google/universal-sentence-encoder-multilingual/3"))
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
tf.lite.OpsSet.SELECT_TF_OPS, # enable TensorFlow ops.
]
tflite_model = converter.convert()
我得到的错误是:
FileNotFoundError: Op type not registered 'SentencepieceOp' in binary running on hongtao-mac. Make sure the Op and Kernel are registered in the binary running in this process. Note that if you are loading a saved graph which used ops from tf.contrib, accessing (e.g.) `tf.contrib.resampler` should be done before importing the graph, as contrib ops are lazily registered when the module is first accessed.
If trying to load on a different device from the computational device, consider using setting the `experimental_io_device` option on tf.saved_model.LoadOptions to the io_device such as '/job:localhost'.
有什么想法吗?
注意:可能相关的问题:Tensorflow hub.load Model to TFLite
https://tfhub.dev/google/universal-sentence-encoder-multilingual/3 states that you need to install tensorflow-text
and import it before loading a model. https://www.tensorflow.org/lite/convert 的文档说建议使用 from_saved_model
而不是 from_keras_model
。以下内容在新的 Colab 中对我有用:
!pip install -q tensorflow-text
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_text as text
hub.load("https://tfhub.dev/google/universal-sentence-encoder-multilingual/3") # Caches the model in /tmp/tfhub_modules
converter = tf.lite.TFLiteConverter.from_saved_model("/tmp/tfhub_modules/26c892ffbc8d7b032f5a95f316e2841ed4f1608c")
converter.target_spec.supported_ops = [
tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.
tf.lite.OpsSet.SELECT_TF_OPS, # enable TensorFlow ops.
]
tflite_file = "model.tflite"
with open(tflite_file, 'wb') as f:
f.write(converter.convert())
interpreter = tf.lite.Interpreter(tflite_file)
interpreter.get_signature_list() # {'serving_default': {'inputs': ['inputs'], 'outputs': ['outputs']}}