TFRecords 解析:如何从单个张量中检索多个图像?
TFRecords parsing: How to retrieve multiple images from a single tensor?
我正在尝试解析具有 coco 格式的数据集,其中包括(除其他外)输入图像和作为输出的图像列表(蒙版)。
数据集已使用 efficientdet/dataset_tools/create_coco_record.py
转换为 tfrecords
以下是序列化的片段:
feature_dict = {
'image/height':
tfrecord_util.int64_feature(image_height),
'image/width':
tfrecord_util.int64_feature(image_width)
'image/encoded':
tfrecord_util.bytes_feature(encoded_jpg),
}
...
for object_annotations in bbox_annotations:
run_len_encoding = mask.frPyObjects(object_annotations['segmentation'],
image_height, image_width)
binary_mask = mask.decode(run_len_encoding)
binary_mask = np.amax(binary_mask, axis=2)
pil_image = PIL.Image.fromarray(binary_mask)
output_io = io.BytesIO()
pil_image.save(output_io, format='PNG')
encoded_mask_png.append(output_io.getvalue()
if include_masks:
feature_dict['image/object/mask'] = (
tfrecord_util.bytes_list_feature(encoded_mask_png))
我的问题来自 tfrecords 的解码,我无法解码掩码张量内的图像。
以下是我的解析函数:
def parse_example(serialized_example):
feature_dict = {
'image/height': tf.io.FixedLenFeature([], tf.int64),
'image/width': tf.io.FixedLenFeature([], tf.int64),
'image/encoded': tf.io.FixedLenFeature([], tf.string),
'image/object/class/label': tf.io.FixedLenSequenceFeature([], tf.int64, allow_missing=True),
'image/object/mask': tf.io.FixedLenSequenceFeature([], tf.string, allow_missing=True),
}
example = tf.io.parse_single_example(serialized_example, features=feature_dict)
raw_height = tf.cast(example['image/height'], tf.int64)
raw_width = tf.cast(example['image/width'], tf.int64)
image = tf.image.decode_png(example['image/encoded'], channels=3)
image = tf.image.resize(image, (512, 512))
labels = example['image/object/class/label']
masks = tf.image.decode_png(example['image/object/mask'], channels=3)
我收到错误:
ValueError: Shape must be rank 0 but is rank 1 for '{{node DecodePng_1}} = DecodePngchannels=3, dtype=DT_UINT8' with input shapes: [?].
我将如何解码向量中的多个图像?
解决方案位于 tf_example_decoder.py。
以下是部分代码片段:
将图像读取为字符串类型的 VarLenFeatures
keys_to_features = {
...
'image/object/mask': tf.io.VarLenFeature(tf.string)
}
parsed_tensors = tf.io.parse_single_example(
serialized=serialized_example, features=keys_to_features)
将稀疏张量转换为密集张量
for k in parsed_tensors:
if isinstance(parsed_tensors[k], tf.SparseTensor):
if parsed_tensors[k].dtype == tf.string:
parsed_tensors[k] = tf.sparse.to_dense(
parsed_tensors[k], default_value='')
然后使用以下方法解码掩码:
def _decode_masks(self, parsed_tensors):
"""Decode a set of PNG masks to the tf.float32 tensors."""
def _decode_png_mask(png_bytes):
mask = tf.squeeze(
tf.io.decode_png(png_bytes, channels=1, dtype=tf.uint8), axis=-1)
mask = tf.cast(mask, dtype=tf.float32)
mask.set_shape([None, None])
return mask
height = parsed_tensors['image/height']
width = parsed_tensors['image/width']
masks = parsed_tensors['image/object/mask']
return tf.cond(
pred=tf.greater(tf.size(input=masks), 0),
true_fn=lambda: tf.map_fn(_decode_png_mask, masks, dtype=tf.float32),
false_fn=lambda: tf.zeros([0, height, width], dtype=tf.float32))
我正在尝试解析具有 coco 格式的数据集,其中包括(除其他外)输入图像和作为输出的图像列表(蒙版)。 数据集已使用 efficientdet/dataset_tools/create_coco_record.py
转换为 tfrecords以下是序列化的片段:
feature_dict = {
'image/height':
tfrecord_util.int64_feature(image_height),
'image/width':
tfrecord_util.int64_feature(image_width)
'image/encoded':
tfrecord_util.bytes_feature(encoded_jpg),
}
...
for object_annotations in bbox_annotations:
run_len_encoding = mask.frPyObjects(object_annotations['segmentation'],
image_height, image_width)
binary_mask = mask.decode(run_len_encoding)
binary_mask = np.amax(binary_mask, axis=2)
pil_image = PIL.Image.fromarray(binary_mask)
output_io = io.BytesIO()
pil_image.save(output_io, format='PNG')
encoded_mask_png.append(output_io.getvalue()
if include_masks:
feature_dict['image/object/mask'] = (
tfrecord_util.bytes_list_feature(encoded_mask_png))
我的问题来自 tfrecords 的解码,我无法解码掩码张量内的图像。
以下是我的解析函数:
def parse_example(serialized_example):
feature_dict = {
'image/height': tf.io.FixedLenFeature([], tf.int64),
'image/width': tf.io.FixedLenFeature([], tf.int64),
'image/encoded': tf.io.FixedLenFeature([], tf.string),
'image/object/class/label': tf.io.FixedLenSequenceFeature([], tf.int64, allow_missing=True),
'image/object/mask': tf.io.FixedLenSequenceFeature([], tf.string, allow_missing=True),
}
example = tf.io.parse_single_example(serialized_example, features=feature_dict)
raw_height = tf.cast(example['image/height'], tf.int64)
raw_width = tf.cast(example['image/width'], tf.int64)
image = tf.image.decode_png(example['image/encoded'], channels=3)
image = tf.image.resize(image, (512, 512))
labels = example['image/object/class/label']
masks = tf.image.decode_png(example['image/object/mask'], channels=3)
我收到错误:
ValueError: Shape must be rank 0 but is rank 1 for '{{node DecodePng_1}} = DecodePngchannels=3, dtype=DT_UINT8' with input shapes: [?].
我将如何解码向量中的多个图像?
解决方案位于 tf_example_decoder.py。
以下是部分代码片段:
将图像读取为字符串类型的 VarLenFeatures
keys_to_features = {
...
'image/object/mask': tf.io.VarLenFeature(tf.string)
}
parsed_tensors = tf.io.parse_single_example(
serialized=serialized_example, features=keys_to_features)
将稀疏张量转换为密集张量
for k in parsed_tensors:
if isinstance(parsed_tensors[k], tf.SparseTensor):
if parsed_tensors[k].dtype == tf.string:
parsed_tensors[k] = tf.sparse.to_dense(
parsed_tensors[k], default_value='')
然后使用以下方法解码掩码:
def _decode_masks(self, parsed_tensors):
"""Decode a set of PNG masks to the tf.float32 tensors."""
def _decode_png_mask(png_bytes):
mask = tf.squeeze(
tf.io.decode_png(png_bytes, channels=1, dtype=tf.uint8), axis=-1)
mask = tf.cast(mask, dtype=tf.float32)
mask.set_shape([None, None])
return mask
height = parsed_tensors['image/height']
width = parsed_tensors['image/width']
masks = parsed_tensors['image/object/mask']
return tf.cond(
pred=tf.greater(tf.size(input=masks), 0),
true_fn=lambda: tf.map_fn(_decode_png_mask, masks, dtype=tf.float32),
false_fn=lambda: tf.zeros([0, height, width], dtype=tf.float32))