如何根据 facet wrap 中的 2 组中的 1 组对条形图进行排序?

How to sort bars according to 1 of 2 groups in a facet wrap?

希望有人能帮我解决以下问题: 我想显示 2 个不同组 (gruppe) 的不同实验室参数 (parameter) 的值 (avg)。此外,我想根据 3 个不同方面随时间的变化(性能)绘制此信息。 这是数据集的一小部分:

# A tibble: 402 x 4
# Groups:   gruppe, parameter [134]
   gruppe parameter                      performance     avg
   <chr>  <chr>                          <chr>         <dbl>
 1 DGE    ACPA(citrull. Prot.-Ak) EIA/Se change_t1t0 NaN    
 2 DGE    ACPA(citrull. Prot.-Ak) EIA/Se change_t2t0  37.6  
 3 DGE    ACPA(citrull. Prot.-Ak) EIA/Se change_t3t0 NaN    
 4 Fasten Apolipoprot. A1 HP             change_t1t0  41.2 
 5 DGE    Apolipoprot. A1 HP             change_t2t0 NaN    
 6 DGE    Apolipoprot. A1 HP             change_t3t0 NaN    
 7 DGE    Apolipoprotein B               change_t1t0 NaN    
 8 DGE    Apolipoprotein B               change_t2t0 NaN    
 9 Fasten Apolipoprotein B               change_t3t0 NaN    
10 DGE    aPTT Pathromtin SL             change_t1t0   0.571
# … with 392 more rows

使用这段代码完全没问题:

#Create labels for 3 facets
lab_labels <- c("Change from Baseline to Day 7 [%]",
                "Change from Baseline to Week 6 [%]",
                "Change from Baseline to Week 12 [%]")

names(lab_labels) <- c("change_t1t0",
                       "change_t2t0",
                       "change_t3t0")

labor_summ_long %>%
  filter(parameter %in% c("Hämatokrit (l/l)","Hämoglobin", "Leukozyten","MCV", "MCH", "MCHC", "RDW-CV", "Thromobzyten","MPV")) %>%
  arrange(desc(avg))%>%
  group_by(gruppe, performance)%>%
  ggplot(aes(x=reorder(parameter,avg), y=avg, group=gruppe, fill = gruppe))+
  geom_col(position = position_dodge())+
  facet_wrap(~performance, 
             scales ="free_y", 
             dir="v",
             labeller = labeller(performance = lab_labels))+
  ylab("") + 
  xlab("") + 
  labs(color="", linetype="")+
  theme_pubclean()+
  theme(strip.background=element_rect(fill="lightgrey"),
        strip.text = element_text(face="bold"),
        legend.position = "bottom",
        legend.title=element_blank())+
  theme(axis.text.x = element_text(angle=45, hjust=1, vjust = 1))+
  scale_x_discrete(labels = c("Hämoglobin"="Hemoglobin", "Leukozyten" = "Leucocytes",
                              "MCV", "MCH", "MCHC", "RDW-CV", "Thromobzyten"="Thrombocytes",
                              "MPV", "Hämatokrit (l/l)"="Hematocrite"))+
  scale_fill_discrete(labels=c('DGE', "Fasten"='Fasting'))

This is how the plot looks like

我遗漏了什么并且未能找到解决方案: 我想订购酒吧...

我用 arrange、sort 等来欺骗,但无法将上述所有条件放在一起。

你有什么想法吗? 非常感谢!

问题是 reorder 通过取每个 parameter 的所有值的平均值重新排序,而不考虑任何分组。

根据您的情况调整 答案并使用一些随机示例数据来模拟您的真实数据,这可以像这样实现:

辅助函数 reorder_where 允许根据附加条件对类别进行排序,例如在你的情况下 gruppe == "Fasten" & performance == "change_t1t0"TRUE

library(dplyr)
library(ggplot2)

reorder_where <- function (x, by, where, fun = mean, ...) {
  xx <- x[where]
  byby <- by[where]
  byby <- tapply(byby, xx, FUN = fun, ...)[x]
  reorder(x, byby)
}

labor_summ_long %>%
  filter(parameter %in% c("Hämatokrit (l/l)","Hämoglobin", "Leukozyten","MCV", "MCH", "MCHC", "RDW-CV", "Thromobzyten","MPV")) %>%
  ggplot(aes(x=reorder_where(parameter, -avg, gruppe == "Fasten" & performance == "change_t1t0"), y=avg, group=gruppe, fill = gruppe))+
  geom_col(position = position_dodge())+
  facet_wrap(~performance, 
             scales ="free_y", 
             dir="v",
             labeller = labeller(performance = lab_labels))+
  ylab("") + 
  xlab("") + 
  labs(color="", linetype="")+
  #theme_pubclean()+
  theme(strip.background=element_rect(fill="lightgrey"),
        strip.text = element_text(face="bold"),
        legend.position = "bottom",
        legend.title=element_blank())+
  theme(axis.text.x = element_text(angle=45, hjust=1, vjust = 1))+
  scale_x_discrete(labels = c("Hämoglobin"="Hemoglobin", "Leukozyten" = "Leucocytes",
                              "MCV", "MCH", "MCHC", "RDW-CV", "Thromobzyten"="Thrombocytes",
                              "MPV", "Hämatokrit (l/l)"="Hematocrite"))+
  scale_fill_discrete(labels=c('DGE', "Fasten"='Fasting'))

数据

set.seed(42)

labor_summ_long <- data.frame(
  parameter = sample(c("Hämatokrit (l/l)","Hämoglobin", "Leukozyten","MCV", "MCH", "MCHC", "RDW-CV", "Thromobzyten","MPV"), 100, replace = TRUE),
  gruppe = sample(c("DGE", "Fasten"), 100, replace = TRUE),
  performance = sample(c("change_t1t0",
                         "change_t2t0",
                         "change_t3t0"), 100, replace = TRUE),
  avg = runif(100, 0, 50)
)
labor_summ_long <- dplyr::distinct(labor_summ_long, parameter, gruppe, performance, .keep_all = TRUE)