tf.GradientTape() returns None 我的神经网络函数的值

tf.GradientTape() returns None value for my neural network function

所以我创建了自己的神经网络,我想针对输入变量对其进行自动微分。我的神经网络代码是这样的

n_input = 1     
n_hidden_1 = 50 
n_hidden_2 = 50 
n_output = 1 

weights = {
'h1': tf.Variable(tf.random.normal([n_input, n_hidden_1],0,0.5)),
'h2': tf.Variable(tf.random.normal([n_hidden_1, n_hidden_2],0,0.5)),
'out': tf.Variable(tf.random.normal([n_hidden_2, n_output],0,0.5))
}

biases = {
'b1': tf.Variable(tf.random.normal([n_hidden_1],0,0.5)),
'b2': tf.Variable(tf.random.normal([n_hidden_2],0,0.5)),
'out': tf.Variable(tf.random.normal([n_output],0,0.5))
}

def multilayer_perceptron(x):
    x = np.array([[[x]]],  dtype='float32')
    layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
    layer_1 = tf.nn.tanh(layer_1)
    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    layer_2 = tf.nn.tanh(layer_2)
    output = tf.matmul(layer_2, weights['out']) + biases['out']
    return output

而对于tf.GradientTape(),我试图用这个

来区分神经网络
x = tf.Variable(1.0)
with tf.GradientTape() as tape:
    y = multilayer_perceptron(x)
dNN1 = tape.gradient(y,x)
print(dNN1)

结果 None。我这里做错了什么?

因为您正在通过 np.arrayx 转换为不可微分的 numpy 数组。

像这样修改你的代码:

def multilayer_perceptron(x):
    #x = np.array([[[x]]],  dtype='float32') #comment
    layer_1 = tf.add(tf.matmul([[[x]]], weights['h1']), biases['b1']) #change x shape by adding []
    layer_1 = tf.nn.tanh(layer_1)
    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    layer_2 = tf.nn.tanh(layer_2)
    output = tf.matmul(layer_2, weights['out']) + biases['out']
    return output

对于一些好的运行 tensorflow操作,最好操作的所有元素都是tf.tensor类型,你必须使用

重塑
def multilayer_perceptron(x):
 x =  tf.reshape(x , (1,1,1))