嵌入:参数索引必须是张量,而不是列表

Embedding: argument indices must be a Tensor, not a list

我正在尝试训练 RNN,但我在嵌入时遇到了问题。 我收到以下错误消息:

TypeError: embedding(): argument 'indices' (position 2) must be Tensor, not list

forward方法中的代码是这样开头的:

def forward(self, word_indices: [int]):
        print("sentences")
        print(len(word_indices))
        print(word_indices)

        word_ind_tensor = torch.tensor(word_indices, device="cpu")

        print(word_ind_tensor)
        print(word_ind_tensor.size())

        embeds_word = self.embedding_word(word_indices)

所有这些的输出是:

sentences
29
[261, 15, 5149, 44, 287, 688, 1125, 4147, 9874, 582, 15, 9875, 3, 2, 6732, 34, 2, 6733, 9, 2, 485, 7, 6734, 3, 741, 2, 2179, 1571, 1]
tensor([ 261,   15, 5149,   44,  287,  688, 1125, 4147, 9874,  582,   15, 9875,
           3,    2, 6732,   34,    2, 6733,    9,    2,  485,    7, 6734,    3,
         741,    2, 2179, 1571,    1])

torch.Size([29])

Traceback (most recent call last):
  File "/home/lukas/Documents/HU/Materialen/21SoSe-Studienprojekt/flair-Studienprojekt/TestModel.py", line 68, in <module>
    embeddings_storage_mode = "CPU") #auf cuda ändern
  File "/home/lukas/Documents/HU/Materialen/21SoSe-Studienprojekt/flair-Studienprojekt/flair/trainers/trainer.py", line 423, in train
    loss = self.model.forward_loss(batch_step)
  File "/home/lukas/Documents/HU/Materialen/21SoSe-Studienprojekt/flair-Studienprojekt/flair/models/sandbox/srl_tagger.py", line 122, in forward_loss
    features = self.forward(word_indices = sent_word_ind, frame_indices = sent_frame_ind)
  File "/home/lukas/Documents/HU/Materialen/21SoSe-Studienprojekt/flair-Studienprojekt/flair/models/sandbox/srl_tagger.py", line 147, in forward
    embeds_word = self.embedding_word(word_indices)
  File "/home/lukas/miniconda3/envs/studienprojekt/lib/python3.7/site-packages/torch/nn/modules/module.py", line 550, in __call__
    result = self.forward(*input, **kwargs)
  File "/home/lukas/miniconda3/envs/studienprojekt/lib/python3.7/site-packages/torch/nn/modules/sparse.py", line 114, in forward
    self.norm_type, self.scale_grad_by_freq, self.sparse)
  File "/home/lukas/miniconda3/envs/studienprojekt/lib/python3.7/site-packages/torch/nn/functional.py", line 1724, in embedding
    return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
TypeError: embedding(): argument 'indices' (position 2) must be Tensor, not list

我最初是通过以下方式初始化嵌入的:

self.embedding_word = torch.nn.Embedding(self.word_dict_size, embedding_size)

word_dict_size 和 embedding_size 都是整数。 是我明显做错了什么还是更深层次的错误?

您正在将 列表 传递给 self.embedding_wordword_indices,而不是您刚刚为此目的创建的张量 word_ind_tensor