更快的外部替代品
Faster alternatives to outer
我正在尝试以更快的速度对 outer()
进行以下调用。通过 foreach
并行化仍然非常慢,所以我想尝试使用 Rcpp 在 C++ 中调用它,但很想听到任何更快的替代方法。
给定一个矩阵 mat
和一个矩阵同名列表 col.list
我这样总结 mat
。
mycall <- function(mat, col.list) {
outer(
rownames(mat),
col.list,
Vectorize(function(x,y) {
mean(mat[x,y])
})
)
}
例如:
set.seed(123)
mat <- matrix(rnorm(100),nrow=10)
rownames(mat) <- letters[1:10]
colnames(mat) <- LETTERS[1:10]
mat
A B C D E F G H I J
a -0.56047565 1.2240818 -1.0678237 0.42646422 -0.69470698 0.25331851 0.37963948 -0.4910312 0.005764186 0.9935039
b -0.23017749 0.3598138 -0.2179749 -0.29507148 -0.20791728 -0.02854676 -0.50232345 -2.3091689 0.385280401 0.5483970
c 1.55870831 0.4007715 -1.0260044 0.89512566 -1.26539635 -0.04287046 -0.33320738 1.0057385 -0.370660032 0.2387317
d 0.07050839 0.1106827 -0.7288912 0.87813349 2.16895597 1.36860228 -1.01857538 -0.7092008 0.644376549 -0.6279061
e 0.12928774 -0.5558411 -0.6250393 0.82158108 1.20796200 -0.22577099 -1.07179123 -0.6880086 -0.220486562 1.3606524
f 1.71506499 1.7869131 -1.6866933 0.68864025 -1.12310858 1.51647060 0.30352864 1.0255714 0.331781964 -0.6002596
g 0.46091621 0.4978505 0.8377870 0.55391765 -0.40288484 -1.54875280 0.44820978 -0.2847730 1.096839013 2.1873330
h -1.26506123 -1.9666172 0.1533731 -0.06191171 -0.46665535 0.58461375 0.05300423 -1.2207177 0.435181491 1.5326106
i -0.68685285 0.7013559 -1.1381369 -0.30596266 0.77996512 0.12385424 0.92226747 0.1813035 -0.325931586 -0.2357004
j -0.44566197 -0.4727914 1.2538149 -0.38047100 -0.08336907 0.21594157 2.05008469 -0.1388914 1.148807618 -1.0264209
col.list <- replicate(5, sample(colnames(mat),sample(10,1)), simplify = F)
col.list
[[1]]
[1] "I" "H" "F" "C"
[[2]]
[1] "H" "C" "E" "D"
[[3]]
[1] "F" "A" "B" "C"
[[4]]
[1] "I" "G" "H" "F"
[[5]]
[1] "B" "F" "A" "D" "J"
mycall(mat, col.list)
[,1] [,2] [,3] [,4] [,5]
[1,] -0.32494304 -0.45677441 -0.03772476 0.03692275 0.46737855
[2,] -0.54260254 -0.75753314 -0.02922133 -0.61368967 0.07088301
[3,] -0.10844910 -0.09763415 0.22265121 0.06475016 0.61009334
[4,] 0.14372171 0.40224937 0.20522554 0.07130067 0.36000416
[5,] -0.43982636 0.17912380 -0.31934091 -0.55151435 0.30598183
[6,] 0.29678266 -0.27389757 0.83293885 0.79433814 1.02136588
[7,] 0.02527506 0.17601171 0.06195023 -0.07211925 0.43025291
[8,] -0.01188734 -0.39897791 -0.62342288 -0.03697956 -0.23527315
[9,] -0.28972770 -0.12070775 -0.24994491 0.22537340 -0.08066115
[10,] 0.61991819 0.16277087 0.13782578 0.81898563 -0.42188074
你可以试试:
sapply(col.list, function(v) rowMeans(mat[, v]))
我怀疑您的解决方案缓慢的原因是 Vectorize
:这是将标量函数转换为向量化函数的好方法,但它的成本很高:因为它基于 mapply
, 它会在每个元素上一个一个地调用函数。也就是说,为每个条目调用一次 mean
。如果 outer
结果很大,那将是非常昂贵的。相反,使用上面的解决方案,代码至少在一个方向上被矢量化,这要归功于 rowMeans
.
我正在尝试以更快的速度对 outer()
进行以下调用。通过 foreach
并行化仍然非常慢,所以我想尝试使用 Rcpp 在 C++ 中调用它,但很想听到任何更快的替代方法。
给定一个矩阵 mat
和一个矩阵同名列表 col.list
我这样总结 mat
。
mycall <- function(mat, col.list) {
outer(
rownames(mat),
col.list,
Vectorize(function(x,y) {
mean(mat[x,y])
})
)
}
例如:
set.seed(123)
mat <- matrix(rnorm(100),nrow=10)
rownames(mat) <- letters[1:10]
colnames(mat) <- LETTERS[1:10]
mat
A B C D E F G H I J
a -0.56047565 1.2240818 -1.0678237 0.42646422 -0.69470698 0.25331851 0.37963948 -0.4910312 0.005764186 0.9935039
b -0.23017749 0.3598138 -0.2179749 -0.29507148 -0.20791728 -0.02854676 -0.50232345 -2.3091689 0.385280401 0.5483970
c 1.55870831 0.4007715 -1.0260044 0.89512566 -1.26539635 -0.04287046 -0.33320738 1.0057385 -0.370660032 0.2387317
d 0.07050839 0.1106827 -0.7288912 0.87813349 2.16895597 1.36860228 -1.01857538 -0.7092008 0.644376549 -0.6279061
e 0.12928774 -0.5558411 -0.6250393 0.82158108 1.20796200 -0.22577099 -1.07179123 -0.6880086 -0.220486562 1.3606524
f 1.71506499 1.7869131 -1.6866933 0.68864025 -1.12310858 1.51647060 0.30352864 1.0255714 0.331781964 -0.6002596
g 0.46091621 0.4978505 0.8377870 0.55391765 -0.40288484 -1.54875280 0.44820978 -0.2847730 1.096839013 2.1873330
h -1.26506123 -1.9666172 0.1533731 -0.06191171 -0.46665535 0.58461375 0.05300423 -1.2207177 0.435181491 1.5326106
i -0.68685285 0.7013559 -1.1381369 -0.30596266 0.77996512 0.12385424 0.92226747 0.1813035 -0.325931586 -0.2357004
j -0.44566197 -0.4727914 1.2538149 -0.38047100 -0.08336907 0.21594157 2.05008469 -0.1388914 1.148807618 -1.0264209
col.list <- replicate(5, sample(colnames(mat),sample(10,1)), simplify = F)
col.list
[[1]]
[1] "I" "H" "F" "C"
[[2]]
[1] "H" "C" "E" "D"
[[3]]
[1] "F" "A" "B" "C"
[[4]]
[1] "I" "G" "H" "F"
[[5]]
[1] "B" "F" "A" "D" "J"
mycall(mat, col.list)
[,1] [,2] [,3] [,4] [,5]
[1,] -0.32494304 -0.45677441 -0.03772476 0.03692275 0.46737855
[2,] -0.54260254 -0.75753314 -0.02922133 -0.61368967 0.07088301
[3,] -0.10844910 -0.09763415 0.22265121 0.06475016 0.61009334
[4,] 0.14372171 0.40224937 0.20522554 0.07130067 0.36000416
[5,] -0.43982636 0.17912380 -0.31934091 -0.55151435 0.30598183
[6,] 0.29678266 -0.27389757 0.83293885 0.79433814 1.02136588
[7,] 0.02527506 0.17601171 0.06195023 -0.07211925 0.43025291
[8,] -0.01188734 -0.39897791 -0.62342288 -0.03697956 -0.23527315
[9,] -0.28972770 -0.12070775 -0.24994491 0.22537340 -0.08066115
[10,] 0.61991819 0.16277087 0.13782578 0.81898563 -0.42188074
你可以试试:
sapply(col.list, function(v) rowMeans(mat[, v]))
我怀疑您的解决方案缓慢的原因是 Vectorize
:这是将标量函数转换为向量化函数的好方法,但它的成本很高:因为它基于 mapply
, 它会在每个元素上一个一个地调用函数。也就是说,为每个条目调用一次 mean
。如果 outer
结果很大,那将是非常昂贵的。相反,使用上面的解决方案,代码至少在一个方向上被矢量化,这要归功于 rowMeans
.