Spark 中的传递异构(非均匀)JSON 列

Pass-through heterogeneous (non-uniform) JSON column in Spark

我们正在使用 Apache Spark 3 处理数据。1.x 其中一个字段包含完全自由格式 JSON,因此各个记录可以包含相同的键,但具有不同的数据类型(payload.field1 在本例中可以是字符串、布尔值或数字):

{"timestamp": "2021-07-30T09:41:51Z", "payload": {"field1": "some text"}}
{"timestamp": "2021-07-30T09:41:52Z", "payload": {"field1": true}}
{"timestamp": "2021-07-30T09:41:53Z", "payload": {"field1": 123}}

我们的目标是保持 payload 字段完好无损。当我们让 Spark 自动检测架构时:

 Dataset<Row> events = spark.read().json("file:////users/user/input.json");

 // some processing is going on here

 events.write().json("file:///users/user/output.json");

输出如下(注意payload.field现在是一个字符串):

{"payload":{"field1":"some text"},"timestamp":"2021-07-30T09:41:51Z"}
{"payload":{"field1":"true"},"timestamp":"2021-07-30T09:41:51Z"}
{"payload":{"field1":"123"},"timestamp":"2021-07-30T09:41:52Z"}

Spark 的 printSchema() 输出:

root
 |-- payload: struct (nullable = true)
 |    |-- field1: string (nullable = true)
 |-- timestamp: string (nullable = true)

到目前为止我们想出的最佳解决方法是:

Dataset<String> eventsAsString = spark.read().text("file:////users/user/input.json").as(Encoders.STRING());

Dataset<Row> events2 = eventsAsString.select( //
        get_json_object(col("value"), "$.timestamp").alias("timestamp"), //
        get_json_object(col("value"), "$.payload").alias("payload") // This will keep payload as string for Spark
);

// Do some processing of events here

// We have to write JSON as string to prevent Spark from encoding payload's field JSON:
events2.withColumn("joined", concat( //
        format_string("{\"timestamp\":\"%s\", ", col("timestamp")), //
        format_string("\"payload\":%s}", col("payload")) //
)).select(col("joined")).write().text("file:///users/user/output.txt"); 
   

我们得到的输出就是我们想要的,数据类型不变:

{"timestamp":"2021-07-30T09:41:51Z", "payload":{"field1":"some text"}}
{"timestamp":"2021-07-30T09:41:52Z", "payload":{"field1":true}}
{"timestamp":"2021-07-30T09:41:53Z", "payload":{"field1":123}}

上面的解决方案有效,但感觉超级 hacky。也许我们在这里遗漏了一些明显的东西?

提前致谢!

对于读取,我们可以在读取之前指定模式。 对于写作,我想不出更好的主意。

    val schema = StructType(Array[StructField](
      StructField("timestamp", DataTypes.StringType, false, Metadata.empty),
      StructField("payload", DataTypes.StringType, false, Metadata.empty)) // force string type
    )

    val df: Dataset[Row] = spark.read.schema(schema).json(ds)

    df.map(r => "{\"timestamp\": \"%s\", \"payload\": %s".format(r.getString(0), r.getString(1)))
      .write.text("xxx")