"ValueError: y should be a 1d array, got an array of shape (3, 4) instead." While using fit() from sklearn

"ValueError: y should be a 1d array, got an array of shape (3, 4) instead." While using fit() from sklearn

我输入:

import numpy as np
from sklearn.linear_model import LogisticRegression
label_list = np.array([1,2,3])
label_list = label_list.reshape(-1,1)
feature_matrix = np.array([[0,0,1,1],[0,1,0,1],[1,0,0,1]])
model = LogisticRegression()
model.fit(label_list,feature_matrix)

然后我的控制台输出:

ValueError: y should be a 1d array, got an array of shape (3, 4) instead.

我该如何解决?我是初学者。请说清楚。

根据示例代码,我了解到 label_list 是“目标向量”(y),feature_matrixX 矩阵。

所以,正确的用法应该是:

 model.fit(feature_matrix, label_list)

此外,您无法重塑 label_list:

label_list = label_list.reshape(-1,1)

因为 model.fit() 需要一个形状为 (n_samples,) 的向量,而你给出的向量形状为 (n_samples, 1).

总而言之,您的代码应如下所示:

import numpy as np
from sklearn.linear_model import LogisticRegression
label_list = np.array([1,2,3])
feature_matrix = np.array([[0,0,1,1],[0,1,0,1],[1,0,0,1]])
model = LogisticRegression()
model.fit(feature_matrix, label_list)