将所有逻辑规则与数据框匹配(需要超快速功能)

Match all logic rules with a dataframe (need super fast function)

我有一个函数可以检查数据帧中是否存在逻辑序列

fu <- function(dat , rule , res.only=T){
debug.vec <- rep("no",nrow(dat)) # control of rule triggers
rule.id <- 1 # rule number in vector
for(i in 1:nrow(dat)){
  # check if the rule "rule[rule.id]" has worked on this "i" index in dat[i,]
  current_rule <- with(data = dat[i,] , expr = eval(parse(text = rule[rule.id]))  )
   if(current_rule){  # if the rule is triggered
          debug.vec[i] <- rule[rule.id]
          if(  rule.id==length(rule)  ) break   # stop if there are no more rules
           rule.id <- rule.id+1  # go to the next rule
           }}  
if(!res.only)  return(  cbind(dat,debug.vec)  )  
return(  sum(debug.vec!="no")==length(rule)   )
}

例如我有一些数据

set.seed(123)
dat <- as.data.frame(matrix(data = sample(10,30,replace = T),ncol = 3))
colnames(dat) <- paste0("x" ,1:ncol(dat))

..

dat
   x1 x2 x3
1   3  5  9
2   3  3  3
3  10  9  4
4   2  9  1
5   6  9  7
6   5  3  5
7   4  8 10
8   6 10  7
9   9  7  9
10 10 10  9

还有一个有规则的向量

rule <- c("x1>5 & x2>2" , "x1>x2" , "x3!=4" )

该函数检查数据帧中是否存在这样的逻辑序列并给出合乎逻辑的答案

> fu(dat = dat, rule = rule, res.only = T)
[1] TRUE

或者您可以更改标志 res.only = F 并查看序列在 debug.vec 列中的位置

> fu(dat = dat, rule = rule, res.only = F)
   x1 x2 x3   debug.vec
1   3  5  9          no
2   3  3  3          no
3  10  9  4 x1>5 & x2>2
4   2  9  1          no
5   6  9  7          no
6   5  3  5       x1>x2
7   4  8 10       x3!=4
8   6 10  7          no
9   9  7  9          no
10 10 10  9          no

我需要这个函数的最快版本,也许使用 Rccp 包 或类似的东西..

UPD=======================

Waldi 功能与我的功能不一样,有问题

UPD_2_=================================== =

# Is this correct?

是的,这是正确的,如果规则[k]被触发然后搜索规则[k+1]从新的数据行开始

请原谅我的问题不够准确,这是我的错

我的函数返回了FALSE因为最后一个规则"x3!=4"没有生效,应该是

dat <- structure(list(x1 = c(2L, 5L, 1L, 3L, 9L, 2L, 6L, 3L, 3L, 9L), 
                      x2 = c(2L, 1L, 6L, 10L, 8L, 10L, 10L, 4L, 6L, 4L), 
                      x3 = c(4L, 9L, 8L, 7L, 10L, 1L, 2L, 8L, 3L, 10L)),
                   class = "data.frame", row.names = c(NA, -10L))
dat
rule <- c("x1>5 & x2>2" , "x1>x2" , "x3!=4" )

my_fu(dat = dat, rule = rule, res.only = F)

只有两条规则有效

> my_fu(dat = dat, rule = rule, res.only = F)
   x1 x2 x3   debug.vec
1   2  2  4          no
2   5  1  9          no
3   1  6  8          no
4   3 10  7          no
5   9  8 10 x1>5 & x2>2
6   2 10  1          no
7   6 10  2          no
8   3  4  8          no
9   3  6  3          no
10  9  4 10       x1>x2

应该是

> my_fu(dat = dat, rule = rule, res.only = T)
[1] FALSE

一种可能的简单基础 R 方式:

with(dat,sapply(rule, function(rule) eval(parse(text = rule))))

      x1>5 & x2>2 x1>x2 x3!=4
 [1,]       FALSE FALSE  TRUE
 [2,]       FALSE FALSE  TRUE
 [3,]        TRUE  TRUE FALSE
 [4,]       FALSE FALSE  TRUE
 [5,]        TRUE FALSE  TRUE
 [6,]       FALSE  TRUE  TRUE
 [7,]       FALSE FALSE  TRUE
 [8,]        TRUE FALSE  TRUE
 [9,]        TRUE  TRUE  TRUE
[10,]        TRUE FALSE  TRUE

any(rowSums(with(dat,sapply(rule, function(rule) eval(parse(text = rule)))))==length(rule))
[1] TRUE

性能:

microbenchmark::microbenchmark(any(rowSums(with(dat,sapply(rule, function(rule) eval(parse(text = rule)))))==length(rule)),
                               fu(dat = dat, rule = rule, res.only = T))

Unit: microseconds
                                                                  expr     min       lq    mean   median
 any(with(dat, sapply(rule, function(rule) eval(parse(text = rule)))))  93.201  97.7010 127.817 104.9010
                              fu(dat = dat, rule = rule, res.only = T) 465.902 499.7015 611.827 523.2505
       uq      max neval
 124.8010  834.201   100
 643.2015 2018.500   100

其他测试:

dat <- structure(list(x1 = c(2L, 5L, 1L, 3L, 9L, 2L, 6L, 3L, 3L, 9L), 
    x2 = c(2L, 1L, 6L, 10L, 8L, 10L, 10L, 4L, 6L, 4L), x3 = c(4L, 
    9L, 8L, 7L, 10L, 1L, 2L, 8L, 3L, 10L)), class = "data.frame", row.names = c(NA, 
-10L))

dat

   x1 x2 x3
1   2  2  4
2   5  1  9
3   1  6  8
4   3 10  7
5   9  8 10
6   2 10  1
7   6 10  2
8   3  4  8
9   3  6  3
10  9  4 10

with(dat,sapply(rule, function(rule) eval(parse(text = rule))))
      x1>5 & x2>2 x1>x2 x3!=4
 [1,]       FALSE FALSE FALSE
 [2,]       FALSE  TRUE  TRUE
 [3,]       FALSE FALSE  TRUE
 [4,]       FALSE FALSE  TRUE
 [5,]        TRUE  TRUE  TRUE
 [6,]       FALSE FALSE  TRUE
 [7,]        TRUE FALSE  TRUE
 [8,]       FALSE FALSE  TRUE
 [9,]       FALSE FALSE  TRUE
[10,]        TRUE  TRUE  TRUE

any(rowSums(with(dat,sapply(rule, function(rule) eval(parse(text = rule)))))==length(rule))
[1] TRUE

fu(dat)
fu(dat = dat, rule = rule, res.only = T)
[1] FALSE
# Is this correct?

更新

根据您的更新,我编写了一个新的 fu 函数,即 TIC_fu()

TIC_fu <- function(dat, rule, res.only = TRUE) {
  m <- with(dat, lapply(rule, function(r) eval(str2expression(r))))
  idx <- na.omit(
    Reduce(
      function(x, y) {
        k <- which(y)
        ifelse(all(k <= x), NA, min(k[k > x]))
      }, m,
      init = 0, accumulate = TRUE
    )
  )[-1]
  if (!res.only) {
    fidx <- head(idx, length(rule))
    debug.vec <- replace(rep("no", nrow(dat)), fidx, rule[seq_along(fidx)])
    return(cbind(dat, debug.vec))
  }
  length(idx) >= length(rule)
}

你会看到

> TIC_fu(dat, rule, FALSE)
   x1 x2 x3   debug.vec
1   2  2  4          no
2   5  1  9          no
3   1  6  8          no
4   3 10  7          no
5   9  8 10 x1>5 & x2>2
6   2 10  1          no
7   6 10  2          no
8   3  4  8          no
9   3  6  3          no
10  9  4 10       x1>x2

> TIC_fu(dat,rule)
[1] FALSE

用于基准测试

> microbenchmark(
+   TIC_fu(dat, rule, FALSE),
+   fu(dat, rule, FALSE),
+   unit = "relative"
+ )
Unit: relative
                     expr      min       lq     mean   median     uq      max
 TIC_fu(dat, rule, FALSE) 1.000000 1.000000 1.000000 1.000000 1.0000 1.000000
     fu(dat, rule, FALSE) 4.639093 4.555523 3.383911 4.450056 4.3993 1.007532
 neval
   100
   100

上一个答案

这里有一些选项与所做的类似,但唯一的区别在于parsestr2langstr2expression

microbenchmark::microbenchmark(
  any(with(dat, rowSums(sapply(rule, function(rule) eval(parse(text = rule))))==length(rule))),
  any(with(dat, rowSums(sapply(rule, function(rule) eval(str2lang(rule))))==length(rule))),
  any(with(dat, rowSums(sapply(rule, function(rule) eval(str2expression(rule))))==length(rule))),
  any(with(dat, eval(str2expression(paste0(rule,collapse = " & ")))))
)

你会看到

Unit: microseconds
                                                                                                  expr
   any(with(dat, rowSums(sapply(rule, function(rule) eval(parse(text = rule)))) ==      length(rule)))
       any(with(dat, rowSums(sapply(rule, function(rule) eval(str2lang(rule)))) ==      length(rule)))
 any(with(dat, rowSums(sapply(rule, function(rule) eval(str2expression(rule)))) ==      length(rule)))
                                  any(with(dat, eval(str2expression(paste0(rule, collapse = " & ")))))
  min   lq    mean median     uq   max neval
 94.0 98.6 131.431 107.35 121.90 632.7   100
 37.5 39.2  48.887  44.05  48.50 174.1   100
 36.8 39.6  51.627  46.20  48.45 241.4   100
 12.7 15.8  19.786  17.00  19.75  97.9   100