在 PASCALVOC 上从模型动物园微调 EfficientDet-D0 无法识别 class 标签 1(TensorFlow 对象检测 API)
finetuning EfficientDet-D0 from model zoo on PASCALVOC doesn't recognize class label 1 (TensorFlow Object Detection API)
我已经从对象检测 API 模型动物园下载了 EfficientDet D0 512x512 模型,下载了 PASCAL VOC 数据集并使用 create_pascal_tf_record.py
文件对其进行了预处理。接下来,我获取了其中一个配置文件并对其进行了调整以适应架构和 VOC 数据集。当使用 pascal_voc_detection_metrics
评估生成的网络时,它给我第一个 class(飞机)接近零的 mAP,其他 classes 表现良好。我假设我在配置文件中的一项设置是错误的(粘贴在下面),为什么会发生这种情况,我该如何解决?
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 20
add_background_class: false
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 3
}
}
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 512
max_dimension: 512
pad_to_max_dimension: true
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 64
class_prediction_bias_init: -4.6
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true
decay: 0.99
epsilon: 0.001
}
}
num_layers_before_predictor: 3
kernel_size: 3
use_depthwise: true
}
}
feature_extractor {
type: 'ssd_efficientnet-b0_bifpn_keras'
bifpn {
min_level: 3
max_level: 7
num_iterations: 3
num_filters: 64
}
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.99,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 1.5
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.5
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint: "oracle/efficientdet_d0/checkpoint/ckpt-0"
fine_tune_checkpoint_version: V2
fine_tune_checkpoint_type: "detection"
batch_size: 3
startup_delay_steps: 0
use_bfloat16: false
num_steps: 30000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_scale_crop_and_pad_to_square {
output_size: 512
scale_min: 0.1
scale_max: 2.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: 8e-2
total_steps: 30000
warmup_learning_rate: .001
warmup_steps: 2500
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
update_trainable_variables: ["WeightSharedConvolutionalBoxPredictor"]
}
train_input_reader: {
label_map_path: "pascalVOC/pascal_label_map.pbtxt"
tf_record_input_reader {
input_path: "pascalVOC/pascal_train.record"
}
}
eval_config: {
metrics_set: "pascal_voc_detection_metrics"
use_moving_averages: false
batch_size: 1;
}
eval_input_reader: {
label_map_path: "pascalVOC/pascal_label_map.pbtxt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "pascalVOC/pascal_val.record"
}
}
pascal_voc_detection_metrics
计算指标的方式存在错误,可以找到修复程序 here
我已经从对象检测 API 模型动物园下载了 EfficientDet D0 512x512 模型,下载了 PASCAL VOC 数据集并使用 create_pascal_tf_record.py
文件对其进行了预处理。接下来,我获取了其中一个配置文件并对其进行了调整以适应架构和 VOC 数据集。当使用 pascal_voc_detection_metrics
评估生成的网络时,它给我第一个 class(飞机)接近零的 mAP,其他 classes 表现良好。我假设我在配置文件中的一项设置是错误的(粘贴在下面),为什么会发生这种情况,我该如何解决?
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 20
add_background_class: false
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
multiscale_anchor_generator {
min_level: 3
max_level: 7
anchor_scale: 4.0
aspect_ratios: [1.0, 2.0, 0.5]
scales_per_octave: 3
}
}
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 512
max_dimension: 512
pad_to_max_dimension: true
}
}
box_predictor {
weight_shared_convolutional_box_predictor {
depth: 64
class_prediction_bias_init: -4.6
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.01
mean: 0.0
}
}
batch_norm {
scale: true
decay: 0.99
epsilon: 0.001
}
}
num_layers_before_predictor: 3
kernel_size: 3
use_depthwise: true
}
}
feature_extractor {
type: 'ssd_efficientnet-b0_bifpn_keras'
bifpn {
min_level: 3
max_level: 7
num_iterations: 3
num_filters: 64
}
conv_hyperparams {
force_use_bias: true
activation: SWISH
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
scale: true,
decay: 0.99,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.25
gamma: 1.5
}
}
localization_loss {
weighted_smooth_l1 {
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.5
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
fine_tune_checkpoint: "oracle/efficientdet_d0/checkpoint/ckpt-0"
fine_tune_checkpoint_version: V2
fine_tune_checkpoint_type: "detection"
batch_size: 3
startup_delay_steps: 0
use_bfloat16: false
num_steps: 30000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_scale_crop_and_pad_to_square {
output_size: 512
scale_min: 0.1
scale_max: 2.0
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: 8e-2
total_steps: 30000
warmup_learning_rate: .001
warmup_steps: 2500
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
update_trainable_variables: ["WeightSharedConvolutionalBoxPredictor"]
}
train_input_reader: {
label_map_path: "pascalVOC/pascal_label_map.pbtxt"
tf_record_input_reader {
input_path: "pascalVOC/pascal_train.record"
}
}
eval_config: {
metrics_set: "pascal_voc_detection_metrics"
use_moving_averages: false
batch_size: 1;
}
eval_input_reader: {
label_map_path: "pascalVOC/pascal_label_map.pbtxt"
shuffle: false
num_epochs: 1
tf_record_input_reader {
input_path: "pascalVOC/pascal_val.record"
}
}
pascal_voc_detection_metrics
计算指标的方式存在错误,可以找到修复程序 here