对行值求和并创建新类别

Sum row values and create new category

我正在处理一个人口数据框,我有不同年份和年龄组的信息,这些信息按五年划分。一旦我过滤了我感兴趣的位置的信息,我就有了这个:

Location    age group   total90  total95  total00  total05  total10
  A          0 to 4      10428    118902     76758   967938   205472
  A          5 to 9      18530    238928    260331   277635   303180    
  A         10 to 14    180428    208902    226758   267938   305472
  A         15 to 19    185003    332089    242267   261793   135472

现在我想要的是创建新的年龄组来拥有这样的东西:

Location    age group       total90  total95    total00  total05    total10
  A          5 to 14        198958   447830     487089    545573    608652
  A           other         195431   450991     319025   1229731    340944   

哪里

年龄段“5 到 14”是每年“5 到 9”+“10 到 14”的总和 &

“其他”是每年“0到4”+“15到19”的总和

我尝试选择带有数字的列,这样我就可以添加每个年龄组的总数并创建包含新年龄组的行,但我无法以简单的方式添加行,而且我让事情变得更加复杂。我确定有一种简单的方法可以解决这个问题,但我被卡住了。

看下面我的回答:

我的第一行读入了显示的数据。

library(tidyverse)

#read in data
my_data <- read_csv("pop_data.csv")

#add extra tags
my_data1 <- my_data %>%
  mutate(Category = c("other","5 to 14","5 to 14","other")) %>%
  select(-`age group`)

#find numeric columns
numeric_col <- unlist(lapply(my_data1, is.numeric))  

#combine the data
my_data2 <- aggregate(my_data1[,numeric_col],
          by = list(my_data1$Location, my_data1$Category),
          FUN = sum) 

#rename first 2 columns
colnames(my_data2)[1:2] <- c("Location", "age group")

结果:

  Location age group total90 total95 total00 total05 total10
1        A   5 to 14  198958  447830  487089  545573  608652
2        A     other  195431  450991  319025 1229731  340944

我不得不稍微改变你的虚拟数据(只是删除了一些 space 以便于阅读纯文本)使其在没有进一步操作的情况下工作

df <- data.table::fread("Location    age_group   total90  total95  total00  total05  total10
  A          0_to_4      10428    118902     76758   967938   205472
  A          5_to_9      18530    238928    260331   277635   303180    
  A         10_to_14    180428    208902    226758   267938   305472
  A         15_to_19    185003    332089    242267   261793   135472")

library(tidyverse)

df %>%
    # alter the character variable age_group reducing problem to one ifelse clause
    dplyr::mutate(age_group = ifelse(age_group == "5_to_9" | age_group == "10_to_14", "5_to_14", "other")) %>%
    # build grouping (I included Location but possibly your need is diferent)
    dplyr::group_by(Location, age_group) %>%
    # sum in one call all not grouped columns (therefore you have to remove Location in case you do not want it in the grouping
    dplyr::summarize(across(everything(), ~sum(.x))) %>%
    # ungrouping prevents unwanted behaviour down stream
    dplyr::ungroup()

# A tibble: 2 x 7
  Location age_group total90 total95 total00 total05 total10
  <chr>    <chr>       <int>   <int>   <int>   <int>   <int>
1 A        5_to_14    198958  447830  487089  545573  608652
2 A        other      195431  450991  319025 1229731  340944

dplyr

的解决方案

您可以先mutateage group列放入感兴趣的范围内,然后summariseacross感兴趣的列,用sum函数

library(dplyr)

df %>% mutate(`age group` = ifelse(`age group` %in% c(`5 to 9`, `10 to 14`), `5 to 14`, 'other') %>%
       group_by(`age group`, location) %>% 
       summarise(across(total90:total10), sum))%>%
       ungroup()

为了完整起见 - 如果您想更改目标 start/end 年龄,这里有一种参数化 target_starttarget_end 的方法:

library(tidyverse)

target_start <- 5
target_end <- 14

df %>% 
  separate(`age group`, into = c("grp_start", "grp_end"), sep = " to ") %>% 
  mutate(across(starts_with("grp"), as.numeric),
         age_group = 
           if_else(grp_start >= target_start & grp_end <= target_end,
                   glue::glue("{target_start} to {target_end}"), 
                   "other")
         ) %>% 
  group_by(age_group, Location) %>% 
  summarise(across(total90:total10, sum)) %>%
  ungroup()