为什么我的 `train_test_split()` returns 相同的样本
Why does my `train_test_split()` returns same samples
为什么我的 sklearn.model_selection.train_test_split()
returns X_train
、X_test
、y_train
、y_test
的相同样本每次 运行 代码,即使我保留了 shuffle=True
,而且我没有手动定义种子值?
我正在打印这样的样本:
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 100, shuffle=True)
print (y_test)
train_test_split
random_state
控制样本状态(https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html):
Controls the shuffling applied to the data before applying the split. Pass an int for reproducible output across multiple function calls
要获得不同的结果,只需删除参数即可。
为什么我的 sklearn.model_selection.train_test_split()
returns X_train
、X_test
、y_train
、y_test
的相同样本每次 运行 代码,即使我保留了 shuffle=True
,而且我没有手动定义种子值?
我正在打印这样的样本:
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 100, shuffle=True)
print (y_test)
train_test_split
random_state
控制样本状态(https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html):
Controls the shuffling applied to the data before applying the split. Pass an int for reproducible output across multiple function calls
要获得不同的结果,只需删除参数即可。