根据 Pandas 中两个多索引列的条件赋值
Assign value based on conditional of two multiindex columns in Pandas
objective是根据列的条件(A
和B
)新建一个多索引列(stat
)
条件A
CONDITION_A='n'if A<0 else 'p'
和
条件B
CONDITION_B='l'if A<0 else 'g'
目前思路是分别分析条件A
和B
,结合分析得到列stat
如下,最后追加回主dataframe .
不过我想知道有没有办法最大化行代码来实现类似objective
预期输出
import pandas as pd
import numpy as np
np.random.seed(3)
arrays = [np.hstack([['One']*2, ['Two']*2]) , ['A', 'B', 'A', 'B']]
columns = pd.MultiIndex.from_arrays(arrays)
df= pd.DataFrame(np.random.randn(5, 4), columns=list('ABAB'))
df.columns = columns
idx = pd.IndexSlice
mask_1 = df.loc[:,idx[:,'A']]<0
appenddf=mask_1.replace({True:'N',False:'P'}).rename(columns={'A':'iii'},level=1)
mask_2 = df.loc[:,idx[:,'B']]<0
appenddf_2=mask_2.replace({True:'l',False:'g'}).rename(columns={'A':'iv'},level=1)
# combine the multiindex
stat_comparison=[''.join(i) for i in zip(appenddf["iii"],appenddf_2["iv"])]
您可以尝试连接两个 dfs:
s=pd.concat([appenddf,appenddf_2],axis=1)
cols=pd.MultiIndex.from_product([s.columns.get_level_values(0),['stat']])
out=pd.concat([s.loc[:,(x,slice(None))].agg('_'.join,axis=1) for x in s.columns.get_level_values(0).unique()],axis=1,keys=cols)
out
的输出:
One Two
stat stat
0 P_g P_l
1 N_l N_l
2 N_l N_g
3 P_g P_l
4 N_l P_l
objective是根据列的条件(A
和B
)新建一个多索引列(stat
)
条件A
CONDITION_A='n'if A<0 else 'p'
和
条件B
CONDITION_B='l'if A<0 else 'g'
目前思路是分别分析条件A
和B
,结合分析得到列stat
如下,最后追加回主dataframe .
不过我想知道有没有办法最大化行代码来实现类似objective
预期输出
import pandas as pd
import numpy as np
np.random.seed(3)
arrays = [np.hstack([['One']*2, ['Two']*2]) , ['A', 'B', 'A', 'B']]
columns = pd.MultiIndex.from_arrays(arrays)
df= pd.DataFrame(np.random.randn(5, 4), columns=list('ABAB'))
df.columns = columns
idx = pd.IndexSlice
mask_1 = df.loc[:,idx[:,'A']]<0
appenddf=mask_1.replace({True:'N',False:'P'}).rename(columns={'A':'iii'},level=1)
mask_2 = df.loc[:,idx[:,'B']]<0
appenddf_2=mask_2.replace({True:'l',False:'g'}).rename(columns={'A':'iv'},level=1)
# combine the multiindex
stat_comparison=[''.join(i) for i in zip(appenddf["iii"],appenddf_2["iv"])]
您可以尝试连接两个 dfs:
s=pd.concat([appenddf,appenddf_2],axis=1)
cols=pd.MultiIndex.from_product([s.columns.get_level_values(0),['stat']])
out=pd.concat([s.loc[:,(x,slice(None))].agg('_'.join,axis=1) for x in s.columns.get_level_values(0).unique()],axis=1,keys=cols)
out
的输出:
One Two
stat stat
0 P_g P_l
1 N_l N_l
2 N_l N_g
3 P_g P_l
4 N_l P_l