为 xarray 中的每个 lat/lon 点选择给定日期的值
Selecting the value at a given date for each lat/lon point in xarray
我有一个 xr.DataArray 对象,网格上的每个经纬度点都有 2015 年的一天(作为 cftime.DateTimeNoLeap 对象)。
date_matrix2015
<xarray.DataArray (lat: 160, lon: 320)>
array([[cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0), ...,
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0)],
[cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0), ...,
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0)],
[cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0), ...,
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0)],
...,
[cftime.DatetimeNoLeap(2015, 3, 14, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 3, 14, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 3, 14, 12, 0, 0, 0), ...,
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0)],
[cftime.DatetimeNoLeap(2015, 9, 15, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 15, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 15, 12, 0, 0, 0), ...,
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 15, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 15, 12, 0, 0, 0)],
[cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0), ...,
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0)]], dtype=object)
Coordinates:
year int64 2015
* lat (lat) float64 -89.14 -88.03 -86.91 -85.79 ... 86.91 88.03 89.14
* lon (lon) float64 0.0 1.125 2.25 3.375 4.5 ... 355.5 356.6 357.8 358.9
我在同一经纬度网格上还有另一个 xr.DataArray 用于垂直速度 (omega
),其中包含 2015 年每一天的数据。在每个经纬度点,我想 selectdate_matrix2015
对应日期的速度值。理想情况下,我想做这样的事情:
omega.sel(time=date_matrix2015)
我曾尝试通过迭代手动构建新的数据数组,但运气不佳。
有人有什么想法吗?提前致谢!
------------编辑----------------
这是该问题的最小可重现示例。为了阐明我在寻找什么:我有两个 DataArrays,一个用于每日降水值,一个用于每日 omega 值。我想为每个 lat/lon 点确定出现最大降水的那一天(我想我已经正确完成了这一部分)。从那里我想在每个 lat/lon 点 select 最大降水日出现的 omega 值。所以最终我想得到一个欧米茄值的 DataArray,它有两个维度,纬度和经度,其中每个 lat/lon 点的值是该位置最大降雨日的欧米茄值。
import numpy as np
import xarray as xr
import pandas as pd
precip = np.abs(8*np.random.randn(10,10,10))
omega = 15*np.random.randn(10,10,10)
lat = np.arange(0,10)
lon = np.arange(0, 10)
##Note: actual data resolution is 160x360
dates = pd.date_range('01-01-2015', '01-10-2015')
precip_da = xr.DataArray(precip).rename({'dim_0':'time', 'dim_1':'lat', 'dim_2':'lon'}).assign_coords({'time':dates, 'lat':lat, 'lon':lon})
omega_da = xr.DataArray(omega).rename({'dim_0':'time', 'dim_1':'lat', 'dim_2':'lon'}).assign_coords({'time':dates, 'lat':lat, 'lon':lon})
#Find Date of maximum precip for each lat lon point and store in an array
maxDateMatrix = precip_da.idxmax(dim='time')
#For each lat lon point, select the value from omega_da on the day of maximum precip (i.e. the date given at that location in the maxDateMatrix)
您可以将 da.sel
with da.idxmax
与 select 配对 index 沿任意维度的最大值:
In [10]: omega_da.sel(time=precip_da.idxmax(dim='time'))
Out[10]:
<xarray.DataArray (lat: 10, lon: 10)>
array([[ 17.72211193, -16.20781517, 9.65493368, -28.16691093,
18.8756182 , 16.81924325, -20.55251804, -18.36625778,
-19.57938236, -10.77385357],
[ 3.95402784, -5.28478105, -8.6632994 , 2.46787932,
20.53981254, -4.74908659, 9.5274101 , -1.08191372,
9.4637305 , -10.91884369],
[-31.30033085, 6.6284144 , 8.15945444, 5.74849304,
12.49505739, 2.11797825, -18.12861347, 7.27497695,
5.16197504, -32.99882591],
...
[-34.73945635, 24.40515233, 14.56982584, 12.16550083,
-8.3558104 , -20.16328749, -33.89051472, -0.09599935,
2.65689584, 29.54056082],
[-18.8660847 , -7.58120994, 15.57632568, 4.19142695,
8.71046261, 9.05684805, 8.48128361, 0.34166869,
8.41090015, -2.31386572],
[ -4.38999926, 17.00411671, 16.66619606, 24.99390669,
-14.01424591, 19.85606151, -16.87897 , 12.84205521,
-16.78824975, -6.33920671]])
Coordinates:
time (lat, lon) datetime64[ns] 2015-01-01 2015-01-01 ... 2015-01-10
* lat (lat) int64 0 1 2 3 4 5 6 7 8 9
* lon (lon) int64 0 1 2 3 4 5 6 7 8 9
请参阅 xarray docs on Indexing and Selecting Data for more info, especially the section on Advanced Indexing 的重要部分,其中介绍了使用 DataArrays 作为索引器以进行强大的整形操作。
我有一个 xr.DataArray 对象,网格上的每个经纬度点都有 2015 年的一天(作为 cftime.DateTimeNoLeap 对象)。
date_matrix2015
<xarray.DataArray (lat: 160, lon: 320)>
array([[cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0), ...,
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0)],
[cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0), ...,
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0)],
[cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0), ...,
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 12, 11, 12, 0, 0, 0)],
...,
[cftime.DatetimeNoLeap(2015, 3, 14, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 3, 14, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 3, 14, 12, 0, 0, 0), ...,
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0)],
[cftime.DatetimeNoLeap(2015, 9, 15, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 15, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 15, 12, 0, 0, 0), ...,
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 15, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 15, 12, 0, 0, 0)],
[cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0), ...,
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0),
cftime.DatetimeNoLeap(2015, 9, 16, 12, 0, 0, 0)]], dtype=object)
Coordinates:
year int64 2015
* lat (lat) float64 -89.14 -88.03 -86.91 -85.79 ... 86.91 88.03 89.14
* lon (lon) float64 0.0 1.125 2.25 3.375 4.5 ... 355.5 356.6 357.8 358.9
我在同一经纬度网格上还有另一个 xr.DataArray 用于垂直速度 (omega
),其中包含 2015 年每一天的数据。在每个经纬度点,我想 selectdate_matrix2015
对应日期的速度值。理想情况下,我想做这样的事情:
omega.sel(time=date_matrix2015)
我曾尝试通过迭代手动构建新的数据数组,但运气不佳。
有人有什么想法吗?提前致谢!
------------编辑----------------
这是该问题的最小可重现示例。为了阐明我在寻找什么:我有两个 DataArrays,一个用于每日降水值,一个用于每日 omega 值。我想为每个 lat/lon 点确定出现最大降水的那一天(我想我已经正确完成了这一部分)。从那里我想在每个 lat/lon 点 select 最大降水日出现的 omega 值。所以最终我想得到一个欧米茄值的 DataArray,它有两个维度,纬度和经度,其中每个 lat/lon 点的值是该位置最大降雨日的欧米茄值。
import numpy as np
import xarray as xr
import pandas as pd
precip = np.abs(8*np.random.randn(10,10,10))
omega = 15*np.random.randn(10,10,10)
lat = np.arange(0,10)
lon = np.arange(0, 10)
##Note: actual data resolution is 160x360
dates = pd.date_range('01-01-2015', '01-10-2015')
precip_da = xr.DataArray(precip).rename({'dim_0':'time', 'dim_1':'lat', 'dim_2':'lon'}).assign_coords({'time':dates, 'lat':lat, 'lon':lon})
omega_da = xr.DataArray(omega).rename({'dim_0':'time', 'dim_1':'lat', 'dim_2':'lon'}).assign_coords({'time':dates, 'lat':lat, 'lon':lon})
#Find Date of maximum precip for each lat lon point and store in an array
maxDateMatrix = precip_da.idxmax(dim='time')
#For each lat lon point, select the value from omega_da on the day of maximum precip (i.e. the date given at that location in the maxDateMatrix)
您可以将 da.sel
with da.idxmax
与 select 配对 index 沿任意维度的最大值:
In [10]: omega_da.sel(time=precip_da.idxmax(dim='time'))
Out[10]:
<xarray.DataArray (lat: 10, lon: 10)>
array([[ 17.72211193, -16.20781517, 9.65493368, -28.16691093,
18.8756182 , 16.81924325, -20.55251804, -18.36625778,
-19.57938236, -10.77385357],
[ 3.95402784, -5.28478105, -8.6632994 , 2.46787932,
20.53981254, -4.74908659, 9.5274101 , -1.08191372,
9.4637305 , -10.91884369],
[-31.30033085, 6.6284144 , 8.15945444, 5.74849304,
12.49505739, 2.11797825, -18.12861347, 7.27497695,
5.16197504, -32.99882591],
...
[-34.73945635, 24.40515233, 14.56982584, 12.16550083,
-8.3558104 , -20.16328749, -33.89051472, -0.09599935,
2.65689584, 29.54056082],
[-18.8660847 , -7.58120994, 15.57632568, 4.19142695,
8.71046261, 9.05684805, 8.48128361, 0.34166869,
8.41090015, -2.31386572],
[ -4.38999926, 17.00411671, 16.66619606, 24.99390669,
-14.01424591, 19.85606151, -16.87897 , 12.84205521,
-16.78824975, -6.33920671]])
Coordinates:
time (lat, lon) datetime64[ns] 2015-01-01 2015-01-01 ... 2015-01-10
* lat (lat) int64 0 1 2 3 4 5 6 7 8 9
* lon (lon) int64 0 1 2 3 4 5 6 7 8 9
请参阅 xarray docs on Indexing and Selecting Data for more info, especially the section on Advanced Indexing 的重要部分,其中介绍了使用 DataArrays 作为索引器以进行强大的整形操作。